Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T07:23:33.378Z Has data issue: false hasContentIssue false

On the existence of condenser potentials

Published online by Cambridge University Press:  22 January 2016

Christian Berg*
Affiliation:
Matematisk Institut, Københavns Universitet, Universitetsparken 5, 2100 Copenhagen ø, Denmark
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The existence of condenser potentials was established in the framework of Dirichlet spaces by Beurling and Deny, cf. Deny [5] or Landkof [10], simply by choosing the potential of minimal energy within a certain convex set. This same idea works for non-symmetric Dirichlet spaces, cf. Bliedtner [3].

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1978

References

[1] Berg, C., Forst, G.: Non-symmetric translation invariant Dirichlet forms. Invent. Math. 21 (1973), 199212.CrossRefGoogle Scholar
[2] Berg, C., Forst, G.: Potential theory on locally compact abelian groups. Ergebnisse der Mathematik Bd. 87. Berlin Heidelberg New York: Springer 1975.Google Scholar
[3] Bliedtner, J.: Dirichlet forms on regular functional spaces. Seminar on potential theory, II. Lecture Notes in Mathematics vol. 226. Berlin Heidelberg New York: Springer 1971.Google Scholar
[4] Deny, J.: Familles fondamentales, Noyaux associés. Ann. Inst. Fourier 3 (1951), 73101.Google Scholar
[5] Deny, J.: Sur les espaces de Dirichlet. Sém. de Théorie du Potentiel, Paris, Ire année, 1957.Google Scholar
[6] Deny, J.: Noyaux de convolution de Hunt et noyaux associés a une famille fondamentale. Ann. Inst. Fourier 12 (1962), 643667.Google Scholar
[7] Deny, J.: title>Méthodes hilbertiennes en théorie du potentiel. Potential Theory (C.I.M.E.I Ciclo, Stresa) 121201. Rome: Ed. Cremonese 1970.Google Scholar
[8] Itô, M.: Characterizations of supports of balayaged measures. Nagoya Math. J. 28 (1966), 203230.Google Scholar
[9] Kishi, M.: Sur Fexistence des mesures des condensateurs. Nagoya Math. J. 30 (1967), 17.CrossRefGoogle Scholar
[10] Landkof, N. S.: Foundations of modern potential theory. Die Grundlehren Bd. 180. Berlin Heidelberg New York: Springer 1972.Google Scholar