Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T23:25:29.430Z Has data issue: false hasContentIssue false

On the conductor of an elliptic curve with a rational point of order 2

Published online by Cambridge University Press:  22 January 2016

Toshihiro Hadano*
Affiliation:
Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let C be an elliptic curve (an abelian variety of dimension one) defined over the field Q of rational numbers. A minimal Weierstrass model for C at all primes p in the sense of Néron [3] is given by a plane cubic equation of the form

where aj belongs to the ring Z of integers of Q, the zero of C being the point of infinity.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1974

References

[1] Miyawaki, I., Elliptic curves of prime power conductor with Q-rational points of finite order, Osaka J. Math., 10 (1973), 309323.Google Scholar
[2] Mordell, L. J., Diophantine equations, Academic Press London and New York, (1969).Google Scholar
[3] Néron, A., Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math. I.H.E.S. no. 21 (1965), 5125.Google Scholar
[4] Neumann, O., Die elliptischen Kurven mit den Führern 3.2m und 9.2m , Math. Nachr., 48 (1971), 387389.Google Scholar
[5] Ogg, A. P., Abelian curves of 2-power conductor, Proc. Camb. Phil. Soc., 62 (1966), 143148.CrossRefGoogle Scholar
[6] Ogg, A. P., Abelian curves of small conductor, J. reine angew. Math., 226 (1967), 205215.Google Scholar
[7] Ogg, A. P., Elliptic curves and wild ramification, Amer. J. Math., 89 (1967), 121.Google Scholar
[8] Vélu, J., Courbes elliptiques sur Q ayant bonne réduction en dehors de {11}, C. R. Acad. Sci. Paris, 273 (1971), 7375.Google Scholar
[9] Vélu, J., Isogénies entre courbes elliptiques, C.R. Acad. Sci. Paris, 273 (1971), 238241.Google Scholar
[10] Hadano, T., Remarks on the Conductor of an Elliptic Curve, Proc. Jap. Acad., 48 (1972), 166167.Google Scholar