Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T00:21:50.792Z Has data issue: false hasContentIssue false

On the Chain Problem of Prime Ideals

Published online by Cambridge University Press:  22 January 2016

Masayoshi Nagata*
Affiliation:
Mathematical Institute Kyoto University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There is a problem called the chain problem of prime ideals, which asks, when 0 is a Noetherian local integral domain, whether the length of an arbitrary maximal chain of prime ideals in 0 is equal to rank 0 or not.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1956

References

[ 1 ] Oka, K., Sur les fonctions analytiques de plusieurs variables, VIII-Lemme fondamental, J. of Math. Soc. of Japan, vol. 3 (1951), pp. 204214.Google Scholar
[ 2 ] Nagata, M., Some remarks on local rings, Nagoya Math. J., vol. 6 (1953), pp. 5358.CrossRefGoogle Scholar
[2, II] Nagata, M., Some remarks on local rings, II, Memoirs Kyoto Univ., ser. A, vol. 28, No. 2 (1954), pp. 109120.Google Scholar
[ 3 ] Nagata, M., Basic theorems on general commutative rings, Memoirs Kyoto Univ., ser. A, vol. 29, No. 1 (1955), pp. 5977.Google Scholar
[ 4 ] Nagata, M., A general theory of algebraic geometry over Dedekind domains, I, Amer. J. of Math., vol. 78, No. 1 (1956), pp. 78116.CrossRefGoogle Scholar
[ 5 ] Nagata, M., The theory of multiplicity in general local rings, forthcoming.Google Scholar
[ 6 ] Nagata, M., The derived normal rings of Noetherian integral domains, Memoirs Kyoto Univ., ser. A, vol. 29, No. 3 (1955), pp. 293303.Google Scholar
[ 7 ] Serre, J. P., Sur la dimension homologique des anneaux et des modules noethériens, forthcoming.Google Scholar
[ 8 ] Zariski, O., Analytical irreducibility of normal varieties, Ann. of Math., vol. 49 (1948), pp. 352361.Google Scholar
[ 9 ] Zariski, O., Sur la normalité analytique des variété normales, Ann. L’inst. Fourier, vol. 2 (1950), pp. 161164.Google Scholar