Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T18:00:43.762Z Has data issue: false hasContentIssue false

On the behavior of the solutions of degenerate parabolic equations

Published online by Cambridge University Press:  22 January 2016

Kazuhiro Ishige*
Affiliation:
Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider degenerate parabolic equations, and obtain an interior and a boundary Harnack inequalities for nonnegative solutions to the degenerate parabolic equations. Furthermore we obtain boundedness and continuity of the solutions.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1999

References

[CS1] Chiarenza, F. and Serapinoi, R., Degenerate parabolic equations and Harnack inequality, Annali di Mat. Pura Appl., 4 (1983), 139162.Google Scholar
[CS2] Chiarenza, F. and Serapinoi, R., A Harnack inequality for degenerate parabolic equations, Comm. in P. D. E., 9 (1984), 719749.Google Scholar
[CS3] Chiarenza, F. and Serapinoi, R., A remark on a Harnack inequality for degenerate parabolic equations, Rend. Sem. Mat. Univ. Padova, 73 (1985), 179190.Google Scholar
[CW] Chanillo, S. and Wheeden, R. L., Harnack’s inequality and mean-value inequalities for solutions of degenerate elliptic equations, Comm. in P. D. E., 11 (1986), 11111134.Google Scholar
[FGS] Fabes, E. B., Garofalo, N., and Salsa, S., A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math., 30 (1986), 536565.CrossRefGoogle Scholar
[FKS] Fabes, E. B., Kenig, C. E., and Serapioni, R. P., The local regularity of solutions of degenerate elliptic equations, Comm. P. D. E., 7 (1982), 77116.CrossRefGoogle Scholar
[GW1] Gutiérrez, C. E. and Wheeden, R. L., Mean value and Harnack inequalities for degenerate parabolic equations, Colloquium Math., dedicated to A. Zygmund, LX/LXI (1990), 157194.Google Scholar
[GW2] Gutiérrez, C. E. and Wheeden, R. L., Harnack’s inequality for degenerate parabolic equations, Comm, P. D. E., 16 (1991), 745770.Google Scholar
[HKO] Heinonen, J., Kilpeläinen, T., and Martio, O., Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, New York, 1993.Google Scholar
[K] Kemper, J. T., A boundary Harnack principle for Lipschitz domain and the principle of positive singularities, Comm. Pure and Appl. Math., XXV (1972), 247255..CrossRefGoogle Scholar
[LSU] Ladyzeskayaya, O. A., Solonikov, N. S. and Ural’tseva, N. N., Linear and quasilinear equations of parabolic type, Transl. Math. Monographs, 23, Amer. Math. Soc., Providence, R. I., 1968.Google Scholar
[Mr] Morrey, C. B., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin-Heidelberg-New York, 1966.CrossRefGoogle Scholar
[Ms] Moser, J., A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., 17 (1964), 101134.CrossRefGoogle Scholar
[SaC1] Saloff-Coste, L., A note on Poincaré, Sobolev, and Harnack inequality, Duke Math. J., I. M. R. N., 2 (1992), 2738.Google Scholar
[SaC2] Saloff-Coste, L., Parabolic Harnack inequality for divergence form second order differential operators, Potential Analysis, 4 (1995), 429467.Google Scholar
[Sa] Salsa, S., Some properties of nonnegative solutions of parabolic differential operators, Ann. Mat. Pure Appl., 128 (1981), 193206.Google Scholar
[Se] Serrin, J., Local behavior of solutions of quasi-linear equations, Acta Math., III (1964), 247302.Google Scholar
[Sta] Stampacchia, G., Equations elliptiques du second ordre á coefficients discontinus, Les Presses De l’Université, 1966.Google Scholar
[Ste] Stein, E. M., Harmonic analysis, Princeton University Press, Princeton, 1992.Google Scholar
[T] Trudinger, N. S., Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math., 21 (1968), 205226.Google Scholar