Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T23:18:40.754Z Has data issue: false hasContentIssue false

On the asymptotic boundary behavior of functions analytic in the unit disk

Published online by Cambridge University Press:  22 January 2016

James R. Choike*
Affiliation:
Department of Mathematics, Oklahoma State University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In [8] a necessary and sufficient condition was given for determining the equivalence of two asymptotic boundary paths for an analytic function w = f(p) on a Riemann surface F. In this paper we give a necessary and sufficient condition for determining the nonequivalence of two asymptotic boundary paths for f(z) analytic in |z| < R, 0 < R ≤ + ∞. We shall, also, illustrate some applications of the main result and examine a class of functions introduced by Valiron.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1977

References

[1] Bagemihl, F., Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. (Wash.) 41 (1959), 379382.CrossRefGoogle Scholar
[2] Bagemihl, F. and Seidel, W., Spiral and other asymptotic paths, and paths of complete indetermination, of analytic and meromorphic functions, Proc. Nat. Acad. Sci. (Wash.) 39 (1953), 12511258.CrossRefGoogle ScholarPubMed
[3] Bagemihl, F. and Seidel, W., Behavior of meromorphic functions on boundary paths, with applications to normal functions, Arch. Math. 11 (1960), 263269.CrossRefGoogle Scholar
[4] Barth, K. F. and Schneider, W. J., On a question of Seidel concerning holomorphic functions bounded on a spiral, Canad. J. Math. 21 (1969), 12551262.CrossRefGoogle Scholar
[5] Bonar, D., On Annular Functions, VEB Deutscher Verlag der Wissenschaften, Berlin, 1971.Google Scholar
[6] Bieberbach, L., Über die asymptotischen Werte der ganzen Funktionen endlicher Ordung, Math. Z. 22 (1925), 3438.CrossRefGoogle Scholar
[7] Choike, J. R., An elementary proof of a theorem of Valiron, Notices of the A.M.S. 16 (1969), 966.Google Scholar
[8] Choike, J. R., On the asymptotic boundary paths of analytic functions, J. reine angew. Math. 264 (1974), 2939.Google Scholar
[9] Collingwood, E. F. and Lohwater, A. J., The Theory of Cluster Sets, Cambridge Univ. Press, New York, 1966.CrossRefGoogle Scholar
[10] Heins, M., A property of the asymptotic spots of a meromorphic function or an interior transformation whose domain is the open unit disk, J. Ind. Math. Soc. 24 (1960), 265268.Google Scholar
[11] Iversen, F., Recherches sur les fonctions inverses des fonctions méromorphes, Thèse, Helsingfors, 1914.Google Scholar
[12] Nevanlinna, R., Analytic Functions, Springer-Verlag, New York-Heidelberg — Berlin, 1970.CrossRefGoogle Scholar
[13] Noshiro, K., On the singularities of analytic functions, Jap. J. Math. 17 (1940), 3796.CrossRefGoogle Scholar
[14] Seidel, W., Holomorphic functions with spiral asymptotic paths, Nagoya Math. J. 14 (1959), 159171.CrossRefGoogle Scholar
[15] Valiron, G., Sur les singularités des fonctions holomorphes dans un cercle, C. R. Acad. Sci. (Paris) 15 (1934), 20652067.Google Scholar
[16] Valiron, G., Sur les singularités de certaines fonctions holomorphes et de leur inverses, J. Math, pures et appl. 15 (1936), 423435.Google Scholar
[17] Walsh, J. L., The Location of Critical Points of Analytic and Harmonic Functions, A.M.S. Coll. Pub., Vol. 34, New York, 1950.Google Scholar
[18] Whyburn, G. T., Analytic Topology, A.M.S. Coll. Pub., Vol. 28, New York, 1942.Google Scholar