No CrossRef data available.
Published online by Cambridge University Press: 22 January 2016
In [8] a necessary and sufficient condition was given for determining the equivalence of two asymptotic boundary paths for an analytic function w = f(p) on a Riemann surface F. In this paper we give a necessary and sufficient condition for determining the nonequivalence of two asymptotic boundary paths for f(z) analytic in |z| < R, 0 < R ≤ + ∞. We shall, also, illustrate some applications of the main result and examine a class of functions introduced by Valiron.