Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T23:19:30.983Z Has data issue: false hasContentIssue false

On spinor exceptional representations

Published online by Cambridge University Press:  22 January 2016

J. W. Benham
Affiliation:
Department of Mathematics, Ohio State University, 231 W. 18th Avenue, Columbus, Ohio 43210USA
J. S. Hsia
Affiliation:
Department of Mathematics, Ohio State University, 231 W. 18th Avenue, Columbus, Ohio 43210USA
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f(x1 …, xm) be a quadratic form with integer coefficients and cZ. If f(x) = c has a solution over the real numbers and if f(x)c (mod N) is soluble for every modulus N, then at least some form h in the genus of f represents c. If m ≧ 4 one may further conclude that h belongs to the spinor genus of f. This does not hold when m = 3.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1982

References

[C] Cassels, J. W. S., Rational Quadratic Forms, Academic Press, London, 1978.Google Scholar
[C1] Cassels, J. W. S., Rationale quadratische Formen, Jber. d. Dt. Math.-Verein., 82 (1980), 8193.Google Scholar
[E] Earnest, A. G., Congruence conditions on integers represented by ternary quadratic forms, Pacific J. Math., 90 (1980), 325333.Google Scholar
[EH] Earnest, A. G. and Hsia, J. S., Spinor genera under field extensions II: 2 unramified in the bottom field, Amer. J. Math., 100 (1978), 523538.Google Scholar
[H] Hsia, J. S., Representations by spinor genera, Pacific J. Math., 63 (1976), 147152.Google Scholar
[H1] Hsia, J. S., Arithmetic theory of integral quadratic forms, Queen’s papers in pure and applied math., 54 (1980), 173204.Google Scholar
[HKK] Hsia, J. S., Kitaoka, Y. and Kneser, M., Representations of positive definite quadratic forms, J. reine angew. Math., 301 (1978), 132141.Google Scholar
[JW] Jones, B. W. and Watson, G. L., On indefinite ternary quadratic forms, Canad. J. Math., 8 (1956), 592608.Google Scholar
[K] Kneser, M., Darstellungsmasse indefiniter quadratischer Formen, Math. Zeitschr., 77 (1961), 188194.Google Scholar
[K1] Kneser, M., Quadratische Formen, Vorlesungs-Ausarbeitung, Göttingen 1973/4.Google Scholar
[OM] O’Meara, O. T., Introduction to Quadratic Forms, Springer-Verlag, 1963.Google Scholar
[SP] Schulze-Pillot, R., Darstellung durch Spinorgeschlechter ternärer quadratischer Formen, J. Number Theory, 12 (1980), 529540.CrossRefGoogle Scholar
[SP1] Schulze-Pillot, R., Darstellung durch definite ternäre quadratische Formen und das Bruhat-Tits-Gebäude der Spingruppe, Dissertation U, Göttingen 1979.Google Scholar