Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T23:50:03.169Z Has data issue: false hasContentIssue false

On some degenerate parabolic equations

Published online by Cambridge University Press:  22 January 2016

Tadato Matsuzawa*
Affiliation:
Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Ω, I be open intervals in Rx = (— ∞ < x < ∞), Rt = (— ∞ < t < ∞) respectively. For a function a(x, t) ∈ C(Ω × I), consider the partial differential operator

(1.1) .

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1973

References

[1] Hörmander, L.: Pseudo-differential operators and hypoelliptic equations, Amer. Math. Soc. Symp. Pure Math., 10 (1966), Singular integral operators, 138183.Google Scholar
[2] Hörmander, L.: Fourier integral operators, I, Acta Math., 127 (1971), 79183.Google Scholar
[3] Hörmander, L.: Hypoelliptic second order differential equations, Acta Math. 119 (1968), 147171.Google Scholar
[4] Kato, Y.: The hypoellipticity of degenerate parabolic differential operators, Jour. Funct. Analysis, Vol. 7, No. 1 (1971), 116131.Google Scholar
[5] Mizohata, S.: Hypoellipticité des équations paraboliques, Bull. Soc. Math. France, 85 (1957), 1550.Google Scholar
[6] Nirenberg, L. and Treves, F.: On local solvability of linear partial differential equations, Part I: Necessary conditions. Comm. Pure Applied Math., Vol. 23 (1970), 138.Google Scholar
[7] Treves, F.: A new method of proof of the subelliptic estimates, Comm. Pure Applied Math., Vol. 24 (1971), 71115.CrossRefGoogle Scholar
[8] Treves, F.: Analytic-hypoelliptic partial differential equations of principal type, Comm. Pure Applied Math., Vol. 24 (1971), 537570.CrossRefGoogle Scholar
[9] Schwartz, L.: Théorie des distributions, Vol. I, Hermann, Paris, (1957).Google Scholar