Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T00:07:10.399Z Has data issue: false hasContentIssue false

On Ramified Riemann Domains

Published online by Cambridge University Press:  22 January 2016

Yoshio Togari*
Affiliation:
Mathematical Institute, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ϕ be a holomorphic mapping of an n-dimensional analytic space E into Cn. If ϕ is non-degenerate at every point of E, we call the pair (E, ϕ) a Riemann domain. The notion of a Riemann domain is a generalization of the notion of a concrete Riemann surface. A Riemann domain (E, ϕ) is said to be unramified if ϕ is a local homeomorphism, and to be ramified if otherwise.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1959

References

[ 1 ] Car tan, H. and Thullen, P.: Zur Theorie der Singularitáten der Funktionen mehrerer komplexer Veränderlichen, Math. Ann. 106 (1932), pp. 617647.Google Scholar
[ 2 ] Behnke arid, H. Thullen, P.: Theorie der Funktionen mehrerer komplexer Veränderlichen (1934).Google Scholar
[ 3 ] Behnke, H. and Stein, K.: Konvergente Folgen von Regularitätsbereichen und die Meromorphiekonvexitat, Math. Ann. 116 (1939), pp. 204216.Google Scholar
[ 4 ] Cartan, H. : Séminaire de E.N.S. (Paris) 195152.Google Scholar
[ 5 ] Cartan, H.: Séminaire de E.N.S. (Paris) 1953–54.Google Scholar
[ 6 ] Oka, K. : Sur les fonctions de plusieurs variables complexes. IX. Domaines finis sans point critique intérieur, Jap. J. Math. 23 (1953), pp. 97155.Google Scholar
[ 7 ] Grauert, H. : Charakterisierung der holomorph vollstandigen komplexen Räume, Math. Ann. 129 (1955), pp. 233259.Google Scholar
[ 8 ] Grauert, H. and Remmert, R.: Konvexität in der komplexen Analysis, Comment. Math. Helv. 31 (1957), pp. 152183.Google Scholar
[ 9 ] Grauert, H. and Remmert, R.: Sur les revêtements analytiques des variété analytiques, Comptes Rendus 85 (1957), pp. 918921.Google Scholar
[10] Iwahashi, R. : Domains spred on a complex space, J. Math. Soc. Japan. Vol 9, No. 4 (1957).Google Scholar
[11] Remmert, R. : Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann. 133 (1957).Google Scholar