Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T23:04:17.165Z Has data issue: false hasContentIssue false

On Metric Properties of Sets of Angular Limits of Meromorphic Functions

Published online by Cambridge University Press:  22 January 2016

J. E. Mcmillan*
Affiliation:
University of Wisconsin-Milwaukee
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f be a nonconstant function meromorphic in the unit disc , with circumference C, and let Ez be a subset of C with positive (linear) measure. Suppose that at each ζ ∈ Ezf has an angular limit aζ and let It is known that Ew contains a closed set with positive harmonic measure (see Priwalow [6, p. 210] or Tsuji [7, p. 339]).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1966

References

[1] Bagemihl, F.: Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U.S.A., 41 (1955), 379382.Google Scholar
[2] Lavrentieff, M.: Sur quelques problèmes concernant les fonctions univalentes sur la frontière, Rec. Math., 43 (1936), 816846 (en russe).Google Scholar
[3] MacLane, G. R.: Asymptotic values of holomorphic functions, Rice Univ. Studies, 49 (1963), 183.Google Scholar
[4] Matsumoto, K.: On some boundary problems in the theory of conformal mappings of Jordan domains, Nagoya Math. Journ., 24 (1964), 129141.Google Scholar
[5] Nevanlinna, R.: Eindeutige analytische Funktionen, Berlin-Göttingen-Heidelberg. 1953.Google Scholar
[6] Priwalow, I. I.: Randeigenschaften analytischer Funktionen, Berlin, 1956.Google Scholar
[7] Tsuji, M.: Potential theory in modern function theory, Tokyo, 1959.Google Scholar