Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T00:05:17.307Z Has data issue: false hasContentIssue false

On Level Curves of Harmonic and Analytic Functions on Riemann Surfaces

Published online by Cambridge University Press:  22 January 2016

Shinji Yamashitad*
Affiliation:
Department of Mathematics, Faculty of Science, Hiroshima University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note we shall denote by R a hyperbolic Riemann surface. Let HP′(R) be the totality of harmonic functions u on R such that every subharmonic function | u | has a harmonic majorant on R. The class HP′(R) forms a vector lattice under the lattice operations:

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1969

References

[1] Constantinescu, C. and Cornea, A., Ideale Ränder Riemannsher Flächen; Springer, Berlin, (1963).Google Scholar
[2] Goluzin, G.M., Geometric theory of functions of a complex variable; 2nd ed., Izd. NAUKA, Moscow, (1966), (Russian), German transl, of the 1st ed., Deutscher Verlag der Wissenschaften, Berlin, (1957).Google Scholar
[3] Nakai, M., On a criterion of quasi-boundedness of positive harmonic functions; Proc. Japan Acad., 41 (1965), 215217.Google Scholar
[4] Parreau, M., Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann; Ann. Inst. Fourier, 3 (1952), 103197.Google Scholar
[5] Privalov, I.I., Boundary behaviours of analytic functions; GTTI, Moscow and Leningrad, (1950), (Russian), German transl., Deutscher Verlag der Wissenschaften, Berlin, (1956).Google Scholar
[6] Smirnov, V.I., Sur les formules de Cauchy et de Green et quelques problèmes qui s’y rattachent; Izv. AN SSSR, ser. mat, 3 (1932), 337372.Google Scholar
[7] Tumarkin, G.C. and Havinson, S. Ya., Analytic functions in multiply connected domains of V.I. Smirnov’s class (of class S); Izv. AN SSSR, ser. mat., 22 (1958), 379386, (Russian).Google Scholar
[8] Yamashita, S., On some families of analytic functions on Riemann surfaces; Nagoya Math. Journ., 31 (1968), 5768.Google Scholar