Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T08:01:46.748Z Has data issue: false hasContentIssue false

On Hyperbolicity of balanced domains

Published online by Cambridge University Press:  22 January 2016

Sung-Hee Park*
Affiliation:
Department of Mathematics, Chonbuk National University, Chonju, Chonbuk 561-756, Republic of Korea. [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We compare the hyperbolicity with respect to the Lempert function with the other hyperbolicities in the class of pseudoconvex balanced domains.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2004

References

[1] Azukawa, K., Hyperbolicity of circular domains, Tôhoku Math. J., 35 (1983), 259265.Google Scholar
[2] Barth, T. J., Convex domains and Kobayashi hyperbolicity, Proc. Amer. Math. Soc., 79 (1980), 556558.Google Scholar
[3] Jarnicki, M. and Pflug, P., Invariant Distances and Metrics in Complex Analysis, De Gruyter Expositions in Math. 9, Walter de Gruyter, Berlin, New York, 1993.Google Scholar
[4] Kobayashi, S., Hyperbolic Complex Spaces, Grundlehren der mathematischen Wissenschaften vol. 318, Springer Verlag, Berlin, Heidelberg, New York, 1998.Google Scholar
[5] Kodama, A., Boundedness of circular domains, Proc. Japan Acad., Ser. A Math. Sci., 58 (1982), 227230.Google Scholar
[6] Park, S.-H., Tautness and Kobayashi hyperbolicity, Ph. D. Thesis, Universität Oldenburg (2003).Google Scholar
[7] Sadullaev, A., Schwarz lemma for circular domains and its applications, Math. Notes, 27 (1980), 120125.Google Scholar
[8] Zwonek, W., On hyperbolicity of pseudoconvex Reinhardt domains, Arch. Math., 72 (1999), 304314.Google Scholar