Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T00:43:19.491Z Has data issue: false hasContentIssue false

On Holomorphic Maps into a Taut Complex Space

Published online by Cambridge University Press:  22 January 2016

Hirotaka Fujimoto*
Affiliation:
Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this paper is to study the extension problem of holomorphic maps of a complex manifold into a taut complex space, which is defined by analogy with a taut complex manifold given by H. Wu ([11]).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1972

References

[1] Barth, T.J., Taut and tight complex manifolds, Proc. Amer. Math. Soc., 24 (1970), 429431.Google Scholar
[2] Grauert, F. Docquier-H., Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., 140 (1960), 94123.Google Scholar
[3] Dufresnoy, J., Théorie nouvelle des familles complexes normales; applications à l’étude des fonctions algébroïdes, Ann. E.N.S., (3) 61 (1944), 144.Google Scholar
[4] Grauert, H., Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., 146 (1962), 331368.Google Scholar
[5] Remmert, H. Grauert-R., Plurisubharmonisches Funktionen in komplexen Räume, Math. Z., 65 (1965), 175194.Google Scholar
[6] Kaup, W., Hyperbolische komplexe Räume, Ann. Inst. Fourier Grenoble, 18 (1969), 303330.Google Scholar
[7] Kiernan, P., On the relations between taut, tight and hyperbolic manifolds, Bull. Amer. Math. Soc, 76 (1970), 4951.CrossRefGoogle Scholar
[8] Kobayashi, S., Invariant distances on complex manifolds and holomorphic maps, J. Math. Soc. Japan, 19 (1967), 460480.Google Scholar
[9] Kwack, M.H., Generalization of the big Picard theorem, Ann. Math., 90 (1969), 922.Google Scholar
[10] Tadokoro, M., Sur les ensembles Pseudoconcaves généraux, J. Math. Soc. Japan, 17 (1965), 281290.Google Scholar
[11] Wu, H., Normal families of holomorphic mappings, Acta Math., 119 (1967), 193233.Google Scholar
[12] Wu, H., The equidistribution theory of holomorphic curves, Princeton Univ. Princeton, New Jersey (1970).Google Scholar