Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T16:01:42.685Z Has data issue: false hasContentIssue false

On Feller’s Kernel and the Drichlet Norm

Published online by Cambridge University Press:  22 January 2016

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recently J. L. Doob [2] evaluated the Dirichlet integral of the BLD harmonic funtion on a Green space in terms of its fine boundary values and θ-kernel of L. Naïm.

On the other hand, the general theory of additive functionals of Markov processes enables us to define the concept of the Dirichlet norm of functions with respect to Markov processes.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1964

References

[1] Doob, J. L., Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France, 85 (1957), 431458.CrossRefGoogle Scholar
[2] Doob, J. L., Boundary properties of functions with finite Dirichlet integrals. Annales Inst. Fourier, 12 (1962), 573621.CrossRefGoogle Scholar
[3] Feller, W., On boundaries and lateral conditions for the Kolmogorov differential equations. Ann. of Math., 65 (1957), 527570.CrossRefGoogle Scholar
[4] Ikeda, N., Sato, K., Tanaka, H. and Ueno, T., Boundary problems of multidimensional diffusion processes, 1. Seminar on probability, 5 (1960), (Japanese).Google Scholar
[5] Ito, S., Fundamental solutions of parabolic differential equations and boundary value problems. Jap. J. Math, 27 (1957), 55102.CrossRefGoogle Scholar
[6] Kunita, H. and Watanabe, T., Markov chains and Martin boundaries. Sugaku, 142 (1962), 8194 (Japanese).Google Scholar
[7] Naïm, L., Sur le rôle de la frontiere de R. S. Martin dans la théorie du potentiel. Annales Inst. Fourier, 7 (1957), 183281.CrossRefGoogle Scholar
[8] Neveu, J.. Une generalisation des processus á accroissements positifs independents. Abh. Math. Sem. Univ. Hamburg, (1961), 3661.Google Scholar