Article contents
On completeness of holomorphic principal bundles
Published online by Cambridge University Press: 22 January 2016
Extract
In this paper we shall investigate the structure of complex Lie groups from function theoretical points of view. A. Morimoto proved in [10] that every connected complex Lie group G has the smallest closed normal connected complex Lie subgroup Ge, such that the factor group G/Ge is Stein. On the other hand there hold the following two basic structure theorems (A1) and (A2) for a connected algebraic group G (cf. [12]). (A1): G has the smallest normal algebraic subgroup N such that the factor group G/N is an affine algebraic group. Moreover N is a connected central subgroup. (A2): G has the unique maximal connected affine algebraic subgroup L, where L is normal and the factor group G/L is an abelian variety.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1975
References
- 1
- Cited by