No CrossRef data available.
Published online by Cambridge University Press: 22 January 2016
In this paper we consider certain tensors associated with differentiable mappings of Riemannian manifolds and apply the results to a p-mapping, which is a special case of a subprojective one in affinely connected manifolds (cf. [1], [7]). The p-mapping in Riemannian manifolds is a generalization of a conformal mapping and a projective one. From a point of view of differential geometry an analogy between these mappings is well known. On the other hand it is interesting that a stereographic projection of a sphere onto a plane is conformal, while a central projection is projectve, namely geodesic-preserving. This situation was clarified partly in [6]. A p-mapping defined in this paper gives a precise explanation of this and also affords a certain mapping in the euclidean space which includes a similar mapping and an inversion as special cases.