Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T23:08:13.408Z Has data issue: false hasContentIssue false

On Buchsbaum rings obtained by gluing

Published online by Cambridge University Press:  22 January 2016

Shiro Goto*
Affiliation:
Department of Mathematics, Nihon University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let A be a Noetherian local ring with maximal ideal m. In 1973 J. Barshay [1] showed that, if A is a Cohen-Macaulay ring, then so is the Rees algebra R(q) = ⊕n≧0qn for every parameter ideal q of A (cf. p. 93, Corollary). Recently the author and Y. Shimoda [5] have proved that the Rees algebra R(q) is a Cohen-Macaulay ring for every parameter ideal q of A if and only if

(#) A is a Buchsbaum ring and for i ≠ 1, dim A.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1981

References

[1] Barshay, J., Graded algebras of powers of ideals generated by A-sequences, J. Algebra, 25 (1973), 9099.CrossRefGoogle Scholar
[2] Buchsbaum, D. A., Complexes in local ring theory, In : Some aspects of ring theory, C. I. M. E. Rom., 1965.Google Scholar
[3] Eakin, P. M., The converse to a well known theorem on noetherian rings, Math. Ann., 177 (1968), 278282.Google Scholar
[4] Goto, S., On the Cohen-Macaulayfication of certain Buchsbaum rings, in preprint.Google Scholar
[5] Goto, S. and Shimoda, Y., On Rees algebras over Buchsbaum rings, in preprint.Google Scholar
[6] Renschuch, B., Stückrad, J., and Vogel, W., Weitere Bemerkungen zu einem Problem der Schnittheorie and über ein Maß von A. Seidenberg für die Imperfektheit, J. Algebra, 37 (1975), 447471.Google Scholar
[7] Sally, J., On the associated graded ring of a local Cohen-Macaulay ring, J. Math. Kyoto Univ., 17 (1977), 1921.Google Scholar
[8] Stückrad, J. and Vogel, W., Eine Verallgemeinerung der Cohen-Macaulay Ringe und Anwendungen auf ein Problem der Multiplizitatstheorie, J. Math. Kyoto Univ., 13 (1973), 513528.Google Scholar
[9] Stückrad, J. and Vogel, W., Über das Amsterdamer Programm von W. Grôbner und Buchsbaum Varietáten, Monatschefte für Mathematik, 78 (1974), 433445.Google Scholar
[10] Tamone, G., Sugli incollamenti di ideali primi, Bollettino U. M. I., 14 (1977), 810825.Google Scholar
[11] Traverso, C., Seminormality and Picard group, Annali della Scuola Norm. Sup. Pisa, 24 (1970), 585595.Google Scholar
[12] Vogel, W., Über eine Vermutung von D. A. Buchsbaum, J. Algebra, 25 (1973), 106112.Google Scholar