Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T18:10:35.709Z Has data issue: false hasContentIssue false

On Asymptotic Values of Slowly Growing Algebroid Functions

Published online by Cambridge University Press:  22 January 2016

Junji Suzuki*
Affiliation:
Mathematical Institute, Nagqya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f(z) be a k-valued algebroid function in |z| <. ∞ and

(1) F(z, f)A0(z)fk + A1(z)fk-1 + · · · Ak(z) = 0

be its defining equation such that the coefficients Ai(z) (i = 0, 1, · · ·, k) are entire functions without any common zero and the left hand side is irreducible.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1971

References

[1] Clunie, J.M. Anderson-J.: Slowly growing meromorphic functions. Comment. Math. Helv., 40, pp. 267280 (1966).Google Scholar
[2] Dufresnoy, J.: Théorie nouvelle des familles complexes normales. Ann. Éc. Norm, sup., pp. 144 (1944).Google Scholar
[3] Hayman, W.K.: Slowly growing integral and subharmonic functions. Comment. Math. Helv., 34, pp. 7584 (1960).Google Scholar
[4] Selberg, H.L.: Algebroide Funktionen und Umkeherfunktionen der Abelscher Integrale. Avh. Norske Vid. Akad., Oslo, 8, pp. 174 (1934).Google Scholar
[5] Tumura, Y.: Sur les théorème de M. Valiron et les singularités transcendantes indirectement critiques. Proc. Imp. Acad. Japan, 17, pp. 6569 (1941).Google Scholar
[6] Valiron, G.: Sur la dérivée des fonctions algébroïdes. Bull. Soc. Math. France, 59, pp. 1739 (1931).Google Scholar
[7] Valiron, G.: Sur le nombre des singularités transcendantes des fonctions inverses d’une classe d’algébroïdes. C.R. Acad. Sci. Paris, 200, pp. 713715 (1935).Google Scholar
[8] Valiron, G.: Lectures on the general theory of integral functions. Chelsa, (1949).Google Scholar
[9] Valiron, G.: Sur les valeurs déficientes des fonctions algébroïdes méromorphes d’ordre nul. J.d’analyse Math. 1, pp. 2842 (1951).CrossRefGoogle Scholar