Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T05:09:07.981Z Has data issue: false hasContentIssue false

ON AN AVERAGE GOLDBACH REPRESENTATION FORMULA OF FUJII

Published online by Cambridge University Press:  17 January 2023

DANIEL A. GOLDSTON
Affiliation:
Department of Mathematics and Statistics San Jose State University San Jose, California USA [email protected]
ADE IRMA SURIAJAYA*
Affiliation:
Faculty of Mathematics Kyushu University Fukuoka Japan

Abstract

Fujii obtained a formula for the average number of Goldbach representations with lower-order terms expressed as a sum over the zeros of the Riemann zeta function and a smaller error term. This assumed the Riemann Hypothesis. We obtain an unconditional version of this result and obtain applications conditional on various conjectures on zeros of the Riemann zeta function.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Suriajaya was supported by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant Numbers 18K13400 and 22K13895, and also by the Ministry of Education, Culture, Sports, Science and Technology Initiative for Realizing Diversity in the Research Environment.

References

Bhowmik, G., Halupczok, K., Matsumoto, K., and Suzuki, Y., Goldbach representations in arithmetic progressions and zeros of Dirichlet L-functions , Mathematika 65 (2019), 5797.CrossRefGoogle Scholar
Bhowmik, G. and Ruzsa, I. Z., Average Goldbach and the quasi-Riemann hypothesis , Anal. Math. 44 (2018), 5156.CrossRefGoogle Scholar
Bhowmik, G. and Schlage-Puchta, J.-C., Mean representation number of integers as the sum of primes , Nagoya Math. J. 200 (2010), 2733.CrossRefGoogle Scholar
Brüdern, J., Kaczorowski, J., and Perelli, A., Explicit formulae for averages of Goldbach representations , Trans. Amer. Math. Soc. 372 (2019), no. 10, 69816999.CrossRefGoogle Scholar
Cramér, H., Some theorems concerning prime numbers , Ark. Mat. Astr. Fys. 15 (1921), 133.Google Scholar
Egami, S. and Matsumoto, K., “Convolutions of the von Mangoldt function and related Dirichlet series” in Proceedings of the 4th China-Japan Seminar Held at Shandong (eds., Kanemitsu, S. and Liu, J.-Y.), Ser. Number Theory Appl. 2, World Sci., Hackensack, NJ, 2007.Google Scholar
Fujii, A., An additive problem of prime numbers , Acta Arith. 58 (1991), 173179.CrossRefGoogle Scholar
Fujii, A., An additive problem of prime numbers. II, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), 248252.Google Scholar
Fujii, A., An additive problem of prime numbers. III, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), 278283.Google Scholar
Goldston, D. A., “Notes on pair correlation of zeros and prime numbers” in Recent Perspectives in Random Matrix Theory and Number Theory (eds., Mezzadri, F. and Snaith, N. C.), London Math. Soc. Lecture Note Ser. 322, Cambridge Univ. Press, Cambridge, 2005, 79110.CrossRefGoogle Scholar
Goldston, D. A. and Montgomery, H. L., “Pair correlation of zeros and primes in short intervals” in Analytic Number Theory and Diophantine Problems: Proceedings of a Conference at Oklahoma State University (1984) (eds., Adolphson, A. C., Conrey, J. B., Ghosh, A., and Yager, R. I.), Birkhauser, Boston, MA, 1987, 183203.CrossRefGoogle Scholar
Goldston, D. A. and Suriajaya, A. I., The prime number theorem and pair correlation of zeros of the Riemann zeta-function , Res. Number Theory 8 (2022), article ID 71. doi:10.1007/s40993-022-00371-4.CrossRefGoogle Scholar
Goldston, D. A. and Vaughan, R. C., “On the Montgomery–Hooley asymptotic formula” in Sieve Methods, Exponential Sums, and their Application in Number Theory (eds., Greaves, G. R. H., Harman, G., and Huxley, M. N.), Cambridge Univ. Press, Cambridge, (1996), 117142.Google Scholar
Goldston, D. A. and Yang, L., “The average number of Goldbach representations” in Prime Numbers and Representation Theory (eds., Tian, Y. and Ye, Y.), Science Press, Beijing, 2017, 112.Google Scholar
Granville, A., Refinements of Goldbach’s conjecture, and the generalized Riemann hypothesis , Funct. Approx. Comment. Math. 37 (2007), 159173.CrossRefGoogle Scholar
Granville, A., Corrigendum to “refinements of Goldbach’s conjecture, and the generalized Riemann hypothesis” , Funct. Approx. Comment. Math. 38 (2008), 235237.CrossRefGoogle Scholar
Grosswald, É., Sur l’ordre de grandeur des différences $\psi \left(x\right)-x\ et\ \pi \left(x\right)-\mathsf{li}\,x$ , C. R. Acad. Sci. Paris 260 (1965), 38133816.Google Scholar
Heath-Brown, D. R., Gaps between primes, and the pair correlation of zeros of the zeta-function , Acta Arith. 41 (1982), 8599.CrossRefGoogle Scholar
Ingham, A. E., The Distribution of Prime Numbers, Cambridge Math. Libr., Cambridge Univ. Press, Cambridge, 1990. Reprint of the 1932 original; with a foreword by R. C. Vaughan.Google Scholar
Koukoulopoulos, D., The Distribution of Prime Numbers, Grad. Stud. Math. 203, Amer. Math. Soc., Providence, RI, 2019.CrossRefGoogle Scholar
Landau, E., Über die Nullstellen der Zetafunktion , Math. Ann. 71 (1912), 548564.CrossRefGoogle Scholar
Languasco, A., Perelli, A., and Zaccagnini, A., Explicit relations between pair correlation of zeros and primes in short intervals , J. Math. Anal. Appl. 394 (2012), 761771.CrossRefGoogle Scholar
Languasco, A., Perelli, A., and Zaccagnini, A., An extension of the pair-correlation conjecture and applications , Math. Res. Lett. 23 (2016), 201220.CrossRefGoogle Scholar
Languasco, A., Perelli, A., and Zaccagnini, A., An extended pair-correlation conjecture and primes in short intervals , Trans. Amer. Math. Soc. 369 (2017), no. 6, 42354250.CrossRefGoogle Scholar
Languasco, A. and Zaccagnini, A., The number of Goldbach representations of an integer , Proc. Amer. Math. Soc. 140 (2012), 795804.CrossRefGoogle Scholar
Languasco, A. and Zaccagnini, A., A Cesàro average of Goldbach numbers , Forum Math. 27 (2015), 19451960,CrossRefGoogle Scholar
Montgomery, H. L., Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, Berlin–New York, 1971.CrossRefGoogle Scholar
Montgomery, H. L., “The pair correlation of zeros of the zeta function” in Analytic Number Theory, Proc. Sympos. Pure Math. XXIV, St. Louis Univ., St. Louis, MO, 1972, 181193.Google Scholar
Montgomery, H. L. and Vaughan, R. C., Error terms in additive prime number theory , Quart. J. Math. Oxford (2) 24 (1973), 207216.CrossRefGoogle Scholar
Montgomery, H. L. and Vaughan, R. C., Multiplicative Number Theory, Cambridge Stud. Adv. Math. 97, Cambridge Univ. Press, Cambridge, 2007.Google Scholar
Saffari, B. and Vaughan, R. C., On the fractional parts of $x/n$ and related sequences II, Ann. Inst. Fourier (Grenoble) 27 (1977), 130.CrossRefGoogle Scholar
Selberg, A., On the normal density of primes in small intervals, and the difference between consecutive primes , Arch. Math. Naturvid. 47 (1943), 87105.Google Scholar
Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, 2nd ed., Clarendon, Oxford, 1986. Revised by D. R. Heath-Brown.Google Scholar
von Koch, H., Sur la distribution des nombres premiers , Acta Math. 24 (1901), 159182.CrossRefGoogle Scholar