No CrossRef data available.
Published online by Cambridge University Press: 22 January 2016
In [1] I investigated some logics intermediate between intuitionistic and classical predicate logics. The purpose of this paper is to show the possibility of applying some intermediate logics to mathematics namely, to show that some mathematical theorems which are provable in the classical logic but not provable in the intuitionistic logic are provable in some intermediate logics. Let LZ be the logical system obtained from LJ′ a variant of Gentzen’s LJ [2], by adding as axioms all those sequents which can be obtained from a sequent scheme Z by substitution for propositional, predicate, or individual variables.