We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We continue the investigation of the product whose argument has been shown, in [2], to be related to the cubic Gauss sum.
[1]Cauchy, A., Méthode simple et nouvelle pour la détermination complète des sommes alternées, formées avec les racines primitives des équations binomes, J. de Math., 5 (1840), 154–168.Google Scholar
[2]
[2]Ito, H., On a product related to the cubic Gauss sum, J. reine angew. Math., 395 (1989), 202–213.Google Scholar
[3]
[3]Loxton, J. H., Products related to Gauss sums, J. reine angew. Math., 268/269 (1974), 53–67.Google Scholar
[4]
[4]Matthews, C. R., Gauss sums and elliptic functions: I. The Kummer sums, Invent. Math., 52 (1979), 163–185.Google Scholar
[5]
[5]McGettric, A. D., A result in the theory of Weierstrass elliptic functions, Proc. London Math. Soc. (3), 25 (1972), 41–54.Google Scholar
[6]
[6]Reshetukha, I. V., A product related to the cubic Gauss sum, Ukrain. Math. J., 37 (1985), 611–616.Google Scholar
[7]
[7]Takagi, T., Product formula of the cubic Gauss sum modulo the product of the primes, J. Number Theory, 62 (1997), 298–306.Google Scholar