Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T23:08:04.304Z Has data issue: false hasContentIssue false

On a product related to the cubic Gauss sum, II

Published online by Cambridge University Press:  22 January 2016

Hiroshi Ito*
Affiliation:
Nagoya University, Chikusa-ku, Nagoya 464-01, Japan, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We continue the investigation of the product whose argument has been shown, in [2], to be related to the cubic Gauss sum.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1997

References

[1] Cauchy, A., Méthode simple et nouvelle pour la détermination complète des sommes alternées, formées avec les racines primitives des équations binomes, J. de Math., 5 (1840), 154168.Google Scholar
[2] Ito, H., On a product related to the cubic Gauss sum, J. reine angew. Math., 395 (1989), 202213.Google Scholar
[3] Loxton, J. H., Products related to Gauss sums, J. reine angew. Math., 268/269 (1974), 5367.Google Scholar
[4] Matthews, C. R., Gauss sums and elliptic functions: I. The Kummer sums, Invent. Math., 52 (1979), 163185.Google Scholar
[5] McGettric, A. D., A result in the theory of Weierstrass elliptic functions, Proc. London Math. Soc. (3), 25 (1972), 4154.Google Scholar
[6] Reshetukha, I. V., A product related to the cubic Gauss sum, Ukrain. Math. J., 37 (1985), 611616.Google Scholar
[7] Takagi, T., Product formula of the cubic Gauss sum modulo the product of the primes, J. Number Theory, 62 (1997), 298306.Google Scholar