Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T06:30:07.927Z Has data issue: false hasContentIssue false

On a function analogous to log η(τ)

Published online by Cambridge University Press:  22 January 2016

Larry Goldstein
Affiliation:
University of Maryland, Department of Mathematics
Pilar de la Torre
Affiliation:
University of Maryland, Department of Mathematics
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let us denote by η(z) the classical η-function of Dedekind defined by

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1975

References

[1] Goldstein, L. J., On a conjecture of Hecke concerning elementary class number formulas, Manuscripta Math. 9 (1973), pp. 245305.CrossRefGoogle Scholar
[2] Goldstein, L. J. and de la Torre, P., On the transformation of log η(τ), Duke Math. J., 41 (1974), pp. 291297.CrossRefGoogle Scholar
[3] Hecke, E., Analytische Funktionen und algebraische Zahlen, I, II, Math. Werke, pp. 336360, 381404.Google Scholar
[4] Hecke, E., Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, I, II, Math. Werke, pp. 215234, 249289.Google Scholar
[5] Meyer, C., Die Berechnung der Klassenzahl abelscher Körper Uber Quadratischen Zahlkörpern, Berlin, Akademie-Verlag, 1957.Google Scholar
[6] Siegel, C. L., Advanced analytic number theory, Tata Institute of Fundamental Research, Bombay, 1961.Google Scholar