Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T22:52:16.238Z Has data issue: false hasContentIssue false

On a criterion for the class number of a quadratic number field to be one

Published online by Cambridge University Press:  22 January 2016

Masakazu Kutsuna*
Affiliation:
Department of Liberal Arts, Gifu Technical College
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

G. Rabinowitsch [3] generalized the concept of the Euclidean algorithm and proved a theorem on a criterion in order that the class number of an imaginary quadratic number field is equal to one:

Theorem. It is necessary and sufficient for the class number of an imaginary quadratic number fieldD = 1 — 4m, m > 0, to be one that x2x + m is prime for any integer x such that 1 ≤ xm — 2.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1980

References

[ 1 ] Nagel, T., Über die Klassenzahl imaginär-quadratischer Zahlkörper. Abh. Math. Sem. U. Hamburg 1 (1922), 140150.CrossRefGoogle Scholar
[ 2 ] Perron, O., Die Lehre von den Kettenbrüchen, 2. Auf. Chelsea.Google Scholar
[ 3 ] Rabinowitsch, G., Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. J. reine angew. Math. 142 (1913), 153164.CrossRefGoogle Scholar