Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Pinsky, Mark
1968.
Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain.
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,
Vol. 9,
Issue. 2,
p.
101.
Keilson, Julian
and
Rao, S. Subba
1970.
A process with chain dependent growth rate.
Journal of Applied Probability,
Vol. 7,
Issue. 3,
p.
699.
Keilson, Julian
and
Rao, S. Subba
1970.
A process with chain dependent growth rate.
Journal of Applied Probability,
Vol. 7,
Issue. 03,
p.
699.
Pinsky, Mark
1971.
Recurrence for Markov processes on N lines.
Journal of Applied Probability,
Vol. 8,
Issue. 4,
p.
724.
Zaslavskii, A. E.
1971.
A generalization of a renewal theorem.
Siberian Mathematical Journal,
Vol. 12,
Issue. 3,
p.
362.
Hersh, R.
and
Pinsky, M.
1972.
Random evolutions are asymptotically gaussian.
Communications on Pure and Applied Mathematics,
Vol. 25,
Issue. 1,
p.
33.
�inlar, Erhan
1972.
Markov additive processes. I.
Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete,
Vol. 24,
Issue. 2,
p.
85.
Pinsky, Mark A.
1973.
Séminaire de Probabilités VII Université de Strasbourg.
Vol. 321,
Issue. ,
p.
273.
Gusak, D. V.
1973.
A class of processes with independent increments on a finite Markov chain.
Ukrainian Mathematical Journal,
Vol. 25,
Issue. 2,
p.
139.
Gusak, D. V.
1973.
Proceedings of the Second Japan-USSR Symposium on Probability Theory.
Vol. 330,
Issue. ,
p.
95.
Gusak, D. V.
and
Peresypkina, S. I.
1975.
Distribution of the exit time and value for homogeneous processes with independent increments given on a finite Markov chain.
Ukrainian Mathematical Journal,
Vol. 26,
Issue. 3,
p.
239.
Serfozo, Richard F.
1975.
Functional limit theorems for stochastic processes based on embedded processes.
Advances in Applied Probability,
Vol. 7,
Issue. 1,
p.
123.
Serfozo, Richard F.
1975.
Functional limit theorems for stochastic processes based on embedded processes.
Advances in Applied Probability,
Vol. 7,
Issue. 1,
p.
123.
Sawyer, Stanley
and
Slatkin, Montgomery
1981.
Density independent fluctuations of population size.
Theoretical Population Biology,
Vol. 19,
Issue. 1,
p.
37.
Brockwell, P. J.
Resnick, S. I.
and
Pacheco-Santiago, N.
1982.
Extreme values, range and weak convergence of integrals of Markov chains.
Journal of Applied Probability,
Vol. 19,
Issue. 2,
p.
272.
Brockwell, P. J.
Resnick, S. I.
and
Pacheco-Santiago, N.
1982.
Extreme values, range and weak convergence of integrals of Markov chains.
Journal of Applied Probability,
Vol. 19,
Issue. 02,
p.
272.
Korolyuk, V. S.
1987.
The central limit theorem for additive functionals of Markov and semi-Markov processes.
Journal of Soviet Mathematics,
Vol. 38,
Issue. 5,
p.
2299.
Cogger, Kenneth O.
1988.
Proposals for research in time series forecasting.
International Journal of Forecasting,
Vol. 4,
Issue. 3,
p.
403.
Ferré, Déborah
Hervé, Loïc
and
Ledoux, James
2012.
Limit theorems for stationary Markov processes with L2-spectral gap.
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques,
Vol. 48,
Issue. 2,
Hervé, Loïc
and
Ledoux, James
2013.
A local limit theorem for densities of the additive component of a finite Markov Additive Process.
Statistics & Probability Letters,
Vol. 83,
Issue. 9,
p.
2119.