Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T23:39:35.132Z Has data issue: false hasContentIssue false

On a class of degenerate elliptic equations

Published online by Cambridge University Press:  22 January 2016

Yoshiaki Hashimoto
Affiliation:
Nagoya University
Tadato Matsuzawa
Affiliation:
Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We shall prove in Chapter I the hypoellipticity for a class of degenerate elliptic operators of higher order. Chapter II will be devoted to the consideration of the regularity at the boundary for the solutions of general boundary problems for the equations considered in Chapter I being restricted to the second order.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1974

References

[1] Baouendi, M. S., Sur une classe d’opérateur elliptiques dégénérés, Bull. Soc. Math. France, 95 (1967), pp. 4587.Google Scholar
[2] Fujiwara, D. and Shimakura, N., Sur les problèmes aux limites elliptiques statement variationnels, J. Math, pures et appl. t. 49 (1970), pp. 128.Google Scholar
[3] Grusin, V. V., On a class of hypoelliptic operators, Math. USSR Sbornik, Vol. 12 (1970), pp. 458476.Google Scholar
[4] Grusin, V. V., Pseudo-differential operators on Rn with bounded symbols, Funkcional. Anal, i Prilozen. 4 (1970), 4, pp. 3750 = Functional Anal. Appl. Vol. 4 (1970), pp. 202212.Google Scholar
[5] Grusin, V. V., Hypoelliptic differential equations and pseudo-differential operators with operator-valued symbols, Mat. Sbornik, t. 88 (130), No. 4 (1972), pp. 504521 (Russian).Google Scholar
[6] Hörmander, L., Hypoelliptic differential operators, Ann. Inst. Fourier Grenoble, Vol. 11 (1961), pp. 477492.Google Scholar
[7] Hörmander, L., Linear partial differential operators, Springer Verlag, 1964.Google Scholar
[8] Hörmander, L., Pseudo-differential operators and hypoelliptic equations, Amer. Math. Soc. Sym. on Singular Intergral Operators, 1966, pp. 138183.Google Scholar
[9] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., Vol. 119 (1968), pp. 147171.Google Scholar
[10] Hörmander, L., On the index of pseudo-differential operators, Elliptische Differentialgeichungen II, Koll. Aug, 1969, in Berlin, Schriftenreihe der Inst, für Math. Deutch. Akad. Wiss. zu Berlin Reihe A, Heft 8.Google Scholar
[11] Kohn, J. J. and Nirenberg, L., An algebra of pseudo-differential operators, Comm. Pure Appl. Math. Vol. 18 (1965), pp. 269305.Google Scholar
[12] Kumano-go, H. and Taniguchi, K., Oscillatory integrals of symbols of pseudo-differential operators on Rn and operators of Fredholm type, Proc. Japan Acad., Vol. 49 (1973), pp. 397402.Google Scholar
[13] Matsuzawa, T., Sur les équations utt + tαuxx = f (α ≧ 0), Nagoya Math. J., Vol. 42 (1971), pp. 4355.Google Scholar
[14] Mizohata, S., Theory of partial differential equations, Oxford, 1973.Google Scholar
[15] Shimakura, N., Problémes aux limites variationnels du type elliptiques, Ann. scient. Éc. Norm. Sup. t. 2 (1969), pp. 255310.Google Scholar
[16] Visik, M. I. and Grusin, V. V., On a class of higher order degenerate elliptic equations, Math. USSR Sbornik, Vol. 8 (1969), pp. 132.Google Scholar