Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T13:28:04.977Z Has data issue: false hasContentIssue false

A note on the variation of Riemann surfaces

Published online by Cambridge University Press:  22 January 2016

Takeo Ohsawa*
Affiliation:
Graduate School of Polymathematics Nagoya University, Chikusa-ku, Nagoya 464-01, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be any Riemann surface. By Koebe’s uniformization theorem we know that the universal covering space of X is conformally equivalent to either Riemann sphere, complex plane, or the unit disc in the complex plane. If X is allowed to vary with parameters we may inquire the parameter dependence of the corresponding family of the universal covering spaces.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1996

References

[B-S] Behnke, H. and Stein, K., Entwicklung analytischer Funktionen auf Riemannschen Flächen, Math. Ann., 120 (1948), 430461.Google Scholar
[B-R] Bers, L. and Royden, H., Holomorphic families of injections, Acta Math., 157 (1986), 259289.CrossRefGoogle Scholar
[D] Demailly, J.-P., Cohomology of q-convex spaces in top degrees, Math. Z., 204 (1990), 283295.CrossRefGoogle Scholar
[D-G] Docquier, F. and Grauert, H., Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., 140 (1960), 94123.Google Scholar
[E-F] Earle, C. J. and Fowler, S., Holomorphic families of open Riemann surfaces, Math. Ann., 270 (1985), 249273.Google Scholar
[E-K-K] Earle, C. J., Kra, I. and Krushkal’, S. L., Holomorphic motions and Teichmüller spaces, Trans. AMS., 343 (1994), 927948.Google Scholar
[E] Elencwajg, G., Pseudo-convexité locale dans les variétés Kähleriennes, Ann. Inst. Fourier, 25 (1975), 295314.Google Scholar
[G] Grauert, H., On Levi’s problem and the imbedding of real-analytic manifolds, Ann. Math., 68 (1958), 460472.CrossRefGoogle Scholar
[O] Ohsawa, T., Completeness of noncompact analytic spaces, Publ. RIMS, 20 (1984), 683692.Google Scholar
[R] Richberg, R., Stetige streng pseudokonvexe Funktionen, Math. Ann., 175 (1968), 251286.Google Scholar
[S] Siu, Y. T., Every Stein subvariety has a Stein neighbourhood, Invent. Math., 38 (1976), 89100.Google Scholar
[Y] Yamaguchi, H., Variations de surfaces de Riemann, C. R. Acad. Sc, 286 (1978),11211124.Google Scholar