Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T14:25:40.978Z Has data issue: false hasContentIssue false

A note on the mean value theorem for special homogeneous spaces

Published online by Cambridge University Press:  22 January 2016

Masanori Morishita
Affiliation:
Department of Mathematics, Faculty of Science, Kanazawa University, Kakuma, Kanazawa, 920-11, Japan
Takao Watanabe
Affiliation:
Department of Mathematics, Faculty of Science, Kanazawa University, Kakuma, Kanazawa, 920-11, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a connected linear algebraic group and X an algebraic variety, both defined over Q, the field of rational numbers. Suppose that G acts on X transitively and the action is defined over Q. Suppose that the set of rational points X(Q) is non-empty. Choosing xX(Q) allows us to identify G/Gx and X as varieties over Q, there Gx is the stabilizer of x.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1996

References

[B-S] Borel, A. and Serre, J.-P., Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv., 39 (1964), 111164.Google Scholar
[B-T] Borel, A.-Tits, J., Compléments a l’article ‘Groupes reductifs’, Publ. Math. I.H.E.S., 41 (1972), 253276.Google Scholar
[C] Chernousov, V.I., On the Hasse principle for groups of type E8 . Dokl. Akad. Nauk SSSR, 306, 25 (1989), 10591063.Google Scholar
[K] Kottwitz, R., Tamagawa numbers, Ann. Math., 127, 3 (1988), 629646.CrossRefGoogle Scholar
[01] Ono, T., On the relative theory of Tamagawa numbers, Ann. Math., 82 (1965), 88111.Google Scholar
[02] Ono, T., A mean value theorem in adele geometry, J. Math. Soc. Japan, 20 (1968), 275288.CrossRefGoogle Scholar
[Sa] Sansuc, J.-J., Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. reine angew., 327 (1981), 12 — 80.Google Scholar
[Se] Serre, J.-P., Cohomologie Galoisienne, Lecture Notes in Math, 5, Springer (1964).Google Scholar
[Si] Siegel, C.L., A mean value theorem in geometry of numbers, Ann. Math., 49 (1945), 340347.CrossRefGoogle Scholar
[T] Tits, J., Classification of algebraic semisimple groups, in Algebraic groups and Discontinuous Subgroups, Proc. Symp. Pure Math., No.9, Amer. Math. Soc, Providence, 1966.CrossRefGoogle Scholar
[W] Weil, A., Sur quelques résultats de Siegel, Summa Brasil Math., 1 (19451946), 2139 in OEuv. Sci., I, 339357.Google Scholar