Published online by Cambridge University Press: 22 January 2016
In [1] R. Brauer asked the following question: Let be a finite group, p a rational prime number, and B a p-block of with defect d and defect group . Is it true that is abelian if and only if every irreducible character in B has height 0 ? The present results on this problem are quite incomplete. If d-0, 1, 2 the conjecture was proved by Brauer and Feit, [4] Theorem 2. They also showed that if is cyclic, then no characters of positive height appear in B. If is normal in , the conjecture was proved by W. Reynolds and M. Suzuki, [12]. In this paper we shall show that for a solvable group , the conjecture is true for the largest prime divisor p of the order of . Actually, one half of this has already been proved in [7]. There it was shown that if is a p-solvable group, where p is any prime, and if is abelian, then the condition on the irreducible characters in B is satisfied.