Published online by Cambridge University Press: 22 January 2016
We shall discuss in this paper some problems in non-linear prediction theory. An Ornstein-Uhlenbeck process {U(t)} is taken to be a basic process, and we shall deal with stochastic processes X(t) that are transformed by functions f satisfying certain condition. Actually, observed processes are expressed in the form X(t) = f(U(t)). Our main problem is to obtain the best non-linear predictor X̂(t, τ) for X(t + τ), τ > 0, assuming that X(s), s ≤t, are observed. The predictor is therefore a non-linear functional of the values X(s), s ≤ t.