Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T16:49:01.676Z Has data issue: false hasContentIssue false

Nonarchimedean geometry of Witt vectors

Published online by Cambridge University Press:  11 January 2016

Kiran S. Kedlaya*
Affiliation:
Department of Mathematics, University of California, San Diego, La Jolla, California 92093, USA, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a perfect 𝔽-algebra equipped with the trivial norm. Let W(R) be the ring of p-typical Witt vectors over R equipped with the p-adic norm. At the level of nonarchimedean analytic spaces (in the sense of Berkovich), we demonstrate a close analogy between W(R) and the polynomial ring R[T] equipped with the Gauss norm, in which the role of the structure morphism from R to R[T] is played by the Teichmüller map. For instance, we show that the analytic space associated to R is a strong deformation retract of the space associated to W(R). We also show that each fiber forms a tree under the relation of pointwise comparison, and we classify the points of fibers in the manner of Berkovich’s classification of points of a nonarchimedean disk. Some results pertain to the study of p-adic representations of étale fundamental groups of nonarchimedean analytic spaces (i.e., relative p-adic Hodge theory).

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2013

References

[1] Baker, M. and Rumely, R., Potential Theory and Dynamics on the Berkovich Projective Line, Math. Surveys Monogr. 159, Amer. Math. Soc., Providence, 2010. MR 2599526.Google Scholar
[2] Berkovich, V. G., Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Math. Surveys Monogr. 33, Amer. Math. Soc., Providence, 1990. MR 1070709.Google Scholar
[3] Berkovich, V. G., Etale cohomology for non-Archimedean analytic spaces, Publ. Math. Inst. Hautes Etudes Sci. 78 (1993), 5161. MR 1259429.CrossRefGoogle Scholar
[4] Berkovich, V. G., Smooth p-adic analytic spaces are locally contractible, Invent. Math. 137 (1999), 184. MR 1702143. DOI 10.1007/s002220050323.Google Scholar
[5] Berkovich, V. G., “Smooth p-adic analytic spaces are locally contractible, II” in Geometric Aspects of Dwork Theory, de Gruyter, Berlin, 2004, 293370. MR 2023293.Google Scholar
[6] Berkovich, V. G., “A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures” in Algebra, Arithmetic and Geometry, Vol. 1: In Honor of Yu. I. Manin, Progr. Math. 269, Birkhäuser, Boston, 2009, 4967. MR 2641170. DOI 10.1007/978-0-8176-4745-2 2.Google Scholar
[7] Bosch, S., Güntzer, U., and Remmert, R., Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry, Grundlehren Math. Wiss. 261, Springer, Berlin, 1984. MR 0746961.Google Scholar
[8] Boucksom, S., Favre, C., and Jonsson, M., Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci. 44 (2008), 449494. MR 2426355. DOI 10.2977/prims/1210167334.CrossRefGoogle Scholar
[9] Buium, A., Arithmetic Differential Equations, Math. Surveys Monogr. 118, Amer. Math. Soc., Providence, 2005. MR 2166202.Google Scholar
[10] Chambert-Loir, A., Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215235. MR 2244803. DOI 10.1515/CRELLE.2006.049.Google Scholar
[11] Fargues, L. and Fontaine, J.-M., Courbes et fibrés vectoriels en théorie de Hodge p-adique, in preparation.Google Scholar
[12] Favre, C. and Jonsson, M., The Valuative Tree, Lecture Notes in Math. 1853, Springer, Berlin, 2004. MR 2097722. DOI 10.1007/b100262.Google Scholar
[13] Favre, C. and Jonsson, M., Valuations and multiplier ideals, J. Amer. Math. Soc. 18 (2005), 655684. MR 2138140. DOI 10.1090/S0894-0347-05-00481-9.Google Scholar
[14] Favre, C. and Jonsson, M., Valuative analysis of planar plurisubharmonic functions, Invent. Math. 162 (2005), 271311. MR 2199007. DOI 10.1007/s00222-005-0443-2.Google Scholar
[15] Hrushovski, E. and Loeser, F., Non-archimedean tame topology and stably dominated types, arXiv:1009.0252v2 [math.AG]Google Scholar
[16] Joyal, A., δ-Anneaux et vecteurs de Witt, C. R. Math. Rep. Acad. Sci. Canada 7 (1985), 177182. MR 0789309.Google Scholar
[17] Kedlaya, K. S., Slope filtrations revisited, Doc. Math. 10 (2005), 447525. MR 2184462. Correction, Doc. Math. 12 (2007), 361362. MR 2365906.Google Scholar
[18] Kedlaya, K. S., Good formal structures for flat meromorphic connections, I: Surfaces, Duke Math. J. 154 (2010), 343418. MR 2682186. DOI 10.1215/00127094-2010-041. Correction, Duke Math. J. 161 (2012), 733734. MR 2891533. DOI 10.1215/00127094-1548380.CrossRefGoogle Scholar
[19] Kedlaya, K. S., p-Adic Differential Equations, Cambridge Stud. Adv. Math. 125, Cambridge University Press, Cambridge, 2010. MR 2663480.Google Scholar
[20] Kedlaya, K. S., “Relative p-adic Hodge theory and Rapoport-Zink period domains” in Proceedings of the International Congress of Mathematicians (Hyderabad, 2010), Vol. 2, Hindustan Book Agency, New Delhi, 2010, 258279. MR 2827795.Google Scholar
[21] Kedlaya, K. S., Good formal structures for flat meromorphic connections, II: Excellent schemes, J. Amer. Math. Soc. 24 (2011), 183229. MR 2726603. DOI 10.1090/S0894-0347-2010-00681-9.Google Scholar
[22] Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals, IV: Local semistable reduction at nonmonomial valuations, Compos. Math. 147 (2011), 467523. MR 2776611. DOI 10.1112/S0010437X10005142.Google Scholar
[23] Nicaise, J., Singular cohomology of the analytic Milnor fiber, and mixed Hodge structure on the nearby cohomology, J. Algebraic Geom. 20 (2011), 199237. MR 2762990. DOI 10.1090/S1056-3911-10-00526-6.Google Scholar
[24] Payne, S., Analytification is the limit of all tropicalizations, Math. Res. Lett. 16 (2009), 543556. MR 2511632.CrossRefGoogle Scholar
[25] Ribenboim, P., The Theory of Classical Valuations, Springer, New York, 1999. MR 1677964.Google Scholar
[26] Serre, J.-P., Local Fields, Grad. Texts in Math. 67, Springer, New York, 1979. MR 0554237.Google Scholar
[27] Temkin, M., Inseparable local uniformization, J. Algebra 373 (2013) 65119. MR 2995017.Google Scholar