Published online by Cambridge University Press: 11 January 2016
Nakajima introduced a certain set of monomials realizing the irreducible highest weight crystals B(λ). The monomial set can be extended so that it contains crystal B(∞) in addition to B(λ). We present explicit descriptions of the crystals B(∞) and B(λ) over special linear Lie algebras in the language of extended Nakajima monomials. There is a natural correspondence between the monomial description and Young tableau realization, which is another realization of crystals B(∞) and B(λ).