Article contents
Multipliers on vector spaces of holomorphic functions
Published online by Cambridge University Press: 22 January 2016
Abstract
Let G be a domain in the complex plane containing zero and H(G) be the set of all holomorphic functions on G. In this paper the algebra M(H(G)) of all coefficient multipliers with respect to the Hadamard product is studied. Central for the investigation is the domain introduced by Arakelyan which is by definition the union of all sets with w ∈ Gc. The main result is the description of all isomorphisms between these multipliers algebras. As a consequence one obtains: If two multiplier algebras M(H(G1)) and M(H(G2)) are isomorphic then is equal to Two algebras H(G1) and H(G2) are isomorphic with respect to the Hadamard product if and only if G1 is equal to G2. Further the following uniqueness theorem is proved: If G1 is a domain containing 0 and if M(H(G)) is isomorphic to H(G1) then G1 is equal to .
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 2000
References
- 3
- Cited by