No CrossRef data available.
Article contents
Motivic zeta functions for prehomogeneous vector spaces and castling transformations
Published online by Cambridge University Press: 22 January 2016
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We study the behaviour of motivic zeta functions of prehomogeneous vector spaces under castling transformations. In particular we deduce how the motivic Milnor fibre and the Hodge spectrum at the origin behave under such transformations.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 2003
References
[1]
Denef, J. and Loeser, F., Motivic Igusa zeta functions, J. Algebraic Geom., 7 (1998), 505–537.Google Scholar
[2]
Denef, J. and Loeser, F., Geometry on arc spaces of algebraic varieties, Proceedings of 3rd European Congress of Mathematics, Barcelona
2000, Progress in Mathematics 201, Birkhaüser (2001), pp. 327–348.Google Scholar
[3]
Denef, J. and Loeser, F., Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology, 41 (2002), 1031–1040.Google Scholar
[4]
Gordon, J., Motivic Haar measure on reductive groups, preprint, March 2002, available at math.AG/0203106.Google Scholar
[5]
Guibert, G., Fonction zêta motivique associée à une famille de séries de deux variables, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 457–460.Google Scholar
[6]
Hosokawa, H., Igusa local zeta functions and parabolic castling transformation of prehomogeneous vector spaces, J. Number Theory, 74 (1999), 148–171.CrossRefGoogle Scholar
[7]
Igusa, J., On functional equations of complex powers, Invent. Math., 85 (1986), 1–29.Google Scholar
[8]
Igusa, J., On the arithmetic of a singular invariant, Amer. J. Math., 110 (1988), 197–233.Google Scholar
[9]
Igusa, J., b-functions and p-adic integrals, Algebraic analysis, Vol. I, Academic Press, Boston, MA, 1988, pp. 231–241.Google Scholar
[10]
Igusa, J., Local zeta functions of certain prehomogeneous vector spaces, Amer. J. Math., 114 (1992), 251–296.Google Scholar
[11]
Kimura, T., The b-functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces, Nagoya Math. J., 85 (1982), 1–80.Google Scholar
[12]
Libgober, A., Hodge decomposition of Alexander invariants, preprint, October 2001, available at math.AG/0108018.Google Scholar
[13]
Looijenga, E., Motivic Measures, Astérisque 276, Séminaire Bourbaki, exposé 874 (2002), 267–297.Google Scholar
[14]
Sabbah, C., Modules d’Alexander et D-modules, Duke Math. J., 60 (1990), 729–814.CrossRefGoogle Scholar
[15]
Saito, M., Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci., 24 (1988), 849–995.Google Scholar
[17]
Sato, M. and Kimura, T., A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65 (1977), 1–155.Google Scholar
[18]
Sato, M. and Shintani, T., On zeta functions associated with prehomogeneous vector spaces, Ann. of Math., 100 (1974), 131–170.Google Scholar
[19]
Teranishi, Y., Relative invariants and b-functions of prehomogeneous vector spaces
, Nagoya Math. J., 98 (1985), 139–156.CrossRefGoogle Scholar
[20]
Steenbrink, J., Mixed Hodge structures on the vanishing cohomology, Real and Complex Singularities, Sijthoff and Noordhoff, Alphen aan den Rijn (1977), 525–563.Google Scholar
[21]
Steenbrink, J., The spectrum of hypersurface singularities, Théorie de Hodge, Luminy
1987, Astérisque, 179–180 (1989), 163–184.Google Scholar
[22]
Varchenko, A., Asymptotic Hodge structure in the vanishing cohomology, Math. USSR Izvestija, 18 (1982), 469–512.Google Scholar
[23]
Yano, T. and Ozeki, I., The b-function of a prehomogeneous vector space (SL(5) × GL(4), Λ2 ⊗ Λ1). Microlocal structure of the regular prehomogeneous vector space associated with SL(5) × GL(4). II, Research on prehomogeneous vector spaces (Kyoto, 1996), RIMS Kōkyūroku, 999 (1997), 92–115.Google Scholar
You have
Access