Published online by Cambridge University Press: 22 January 2016
We study moduli spaces M(c1, c2, d, r) of isomorphism classes of algebraic 2-vector bundles with fixed numerical invariants c1, c2, d, r over a ruled surface. These moduli spaces are independent of any ample line bundle on the surface. The main result gives necessary and sufficient conditions for the non-emptiness of the space M(c1, c2, d, r) and we apply this result to the moduli spaces ML(c1, c2) of stable bundles, where L is an ample line bundle on the ruled surface.