Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T23:46:19.821Z Has data issue: false hasContentIssue false

The modular equation and modular forms of weight one

Published online by Cambridge University Press:  22 January 2016

Toyokazu Hiramatsu
Affiliation:
Department of Mathematics Kobe University, Rokko, Kobe, 657, Japan
Yoshio Mimura
Affiliation:
Department of Mathematics Kobe University, Rokko, Kobe, 657, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This is a continuation of the previous paper [8] concerning the relation between the arithmetic of imaginary quadratic fields and cusp forms of weight one on a certain congruence subgroup. Let K be an imaginary quadratic field, say K = with a prime number q ≡ − 1 mod 8, and let h be the class number of K. By the classical theory of complex multiplication, the Hubert class field L of K can be generated by any one of the class invariants over K, which is necessarily an algebraic integer, and a defining equation of which is denoted by

Φ(x) = 0.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1985

References

[ 1 ] Deligne, P. et Serre, J.-P., Formes modulaires de poids 1, Ann. Sci. École Norm. Sup., 4 (1974), 507530.CrossRefGoogle Scholar
[ 2 ] Eichler, M., Der Hilbertsche Klassenkörper eines imaginärquadratischen Zahlkörper, Math. Z., 64 (1956), 229242.Google Scholar
[ 3 ] Fricke, R., Lehrbuch der Algebra III, Braunschweig 1928.Google Scholar
[ 4 ] Hasse, H., Neue Begründung der komplexen Multiplikation, I: J. Reine Angew. Math., 157 (1927), 115139, II: Ibid., 165 (1931), 6488.Google Scholar
[ 5 ] Hasse, H., Uber den Klassenkorper zum quadratischen Zahlkorper mit der Diskriminate 47, Acta Arith., 9 (1964), 419434.Google Scholar
[ 6 ] Hasse, H. and Liang, J., Uber den Klassenkorper zum quadratischen Zahlkorpermit der Diskriminate 47 (Fortsetzung), Acta Arith., 16 (1969), 8997.Google Scholar
[ 7 ] Hecke, E., Zur Theorie der elliptischen Modulfunktionen, Math. Ann., 97 (1926), 210242 (=Math. Werke, 461486).Google Scholar
[ 8 ] Hiramatsu, T., Higher reciprocity laws and modular forms of weight one, Comm. Math. Univ. St. Paul, 31 (1982), 7585.Google Scholar
[ 9 ] Serre, J.-P., Modular forms of weight one and Galois representations, Proc. Symposium on Algebraic Number Field, Academic Press, London, 1977, pp. 193268.Google Scholar
[10] Weber, H., Lehrbuch der Algebra III, Braunschweig 1908.Google Scholar
[11] Yui, N., Explicit form of the modular equation, J. Reine Angew. Math., 299/300 (1978), 185200.Google Scholar
[12] Zassenhaus, H. and Liang, J., On a problem of Hasse, Math. Comp., 23 (1969), 515519.Google Scholar
[13] Seminar on Complex Multiplication, Lecture Notes in Math. No. 21, Springer-Verlag, Berlin, Heidelberg, New York 1966 (from the Institute Seminar by Borel, Chowla, Herz, Iwasawa, Serre, held in 195758).Google Scholar