Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T21:32:45.477Z Has data issue: false hasContentIssue false

A Mirror Construction for the Totally Nonnegative Part of the Peterson Variety

Published online by Cambridge University Press:  11 January 2016

Konstanze Rietsch*
Affiliation:
King’s College [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We explain how A. Givental’s mirror symmetric family [14] to the type A ag variety and its proposed generalization [3] to partial ag varieties by Batyrev, Ciocan-Fontanine, Kim and van Straten relate to the Peterson variety Y ⊂ SLn/B. We then use this theory to describe the totally nonnegative part of Y, extending a result from [30].

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2006

References

[1] Astashkevich, A. and Sadov, V., Quantum cohomology of partial flag manifolds, Comm. Math. Physics, 170 (1995), 503528.CrossRefGoogle Scholar
[2] Batyrev, V., Ciocan-Fontanine, I., Kim, B., and Straten, D. van, Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians, Nuclear Physics B, 514 (1998), 640666.CrossRefGoogle Scholar
[3] Batyrev, V., Mirror symmetry and toric degenerations of partial flag manifolds, Acta Math., 184 (2000), no. 1, 139.CrossRefGoogle Scholar
[4] Borel, A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2), 57 (1953), 115207.CrossRefGoogle Scholar
[5] Brion, M. and Carrell, J., Equivariant cohomology of regular varieties, Mich. Math. J., 52 (2004), 189203.Google Scholar
[6] Ciocan-Fontanine, I., On quantum cohomology rings of partial flag varieties, Duke Math. J. (1999), no. 3, 485523.Google Scholar
[7] Cox, D. A. and Katz, S., Mirror symmetry and algebraic geometry, American Mathematical Society, Providence, RI, 1999.CrossRefGoogle Scholar
[8] Deodhar, V. V., On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math., 79 (1985), no. 3, 499511. MR 86f:20045.Google Scholar
[9] Eguchi, T., Hori, K., and Xiong, C.-S., Gravitational quantum cohomology, Int. J. Mod. Phys., A12 (1997), 1743-1782.Google Scholar
[10] Fomin, S., Gelfand, S., and Postnikov, A., Quantum Schubert polynomials, J. Amer. Math. Soc., 168 (1997), 565596.CrossRefGoogle Scholar
[11] Gepner, D., Fusion rings and geometry, Comm. Math. Phys., 141 (1991), 381411.CrossRefGoogle Scholar
[12] Gerasimov, A., Kharchev, S., Lebedev, D., and Oblezin, S., On a Gauss-Givental representation of quantum Toda chain wave function, (2005), math.RT/0505310.Google Scholar
[13] Givental, A., Equivariant Gromov-Witten invariants, IMRN, No. 13 (1996), 613663.Google Scholar
[14] Givental, A., Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, Topics in singularity theory, American Mathematical Society Translations Ser. 2, AMS (1997).Google Scholar
[15] Givental, A. and Kim, B., Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys., 168 (1995), 609641.CrossRefGoogle Scholar
[16] Givental, A. B., Homological geometry and mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (Basel), Birkhäauser (1995), pp. 472480. MR MR1403947 (97j:58013).Google Scholar
[17] Kazhdan, D. and Lusztig, G., Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, RI (1980), pp. 185203. MR 84g:14054.Google Scholar
[18] Kim, B., Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairings, Internat. Math. Res. Notices (1995), 115.Google Scholar
[19] Kostant, B., Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight ρ, Selecta Math. (N.S.), 2 (1996), 4391.Google Scholar
[20] Kostant, B., Quantum cohomology of the flag manifold as an algebra of rational functions on a unipotent algebraic group, Deformation theory and geometry (Ascona, 1996), vol. 20, Kluwer (1997), pp. 157175.Google Scholar
[21] Lusztig, G., Total positivity in reductive groups, Lie theory and geometry: in honor of Bertram Kostant (G. I. Lehrer, ed.), Progress in Mathematics, vol. 123, Birkhaeuser, Boston (1994), pp. 531568.Google Scholar
[22] Lusztig, G., Introduction to total positivity, Positivity in Lie theory: open problems, de Gruyter Exp. Math., vol. 26, de Gruyter, Berlin (1998), pp. 133145. MR MR1648700 (99h:20077).CrossRefGoogle Scholar
[23] Marsh, R. J. and Rietsch, K., Parametrizations in flag varieties, Representation Theory, 8 (2004), 212242.CrossRefGoogle Scholar
[24] McDuff, D. and Salamon, D., J-holomorphic curves and quantum cohomology, University Lecture Series, American Mathematical Society, Providence, RI, 1994.Google Scholar
[25] Peterson, D., Quantum cohomology of G/P, Lecture Course, M.I.T., Spring Term, 1997.Google Scholar
[26] Rietsch, K., A mirror symmetric construction for qH(G/P), math.AG/0511124.Google Scholar
[27] Rietsch, K., An algebraic cell decomposition of the nonnegative part of a flag variety, J. Algebra, 213 (1999), 144154.CrossRefGoogle Scholar
[28] Rietsch, K., Quantum cohomology of Grassmannians and total positivity, Duke Math. J., 113 (2001), no. 3, 521551.Google Scholar
[29] Rietsch, K., Finite Toeplitz matrices and quantum cohomology of flag varieties, Proceedings of the Tenth Annual Meeting Women in Mathematics, World Scientific (2003), pp. 149167.Google Scholar
[30] Rietsch, K., Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties, J. Amer. Math. Soc., 16 (2003), 363392.Google Scholar
[31] Rietsch, K., Erratum to: “Totally positive Toeplitz matrics and quantum cohomology of partial flag varieties”, submitted (2005), 3 pages.Google Scholar
[32] Tymoczko, J., Paving Hessenberg varieties by affines, (2004), math.AG/0409118.Google Scholar
[33] Whitney, A. M., A reduction theorem for totally positive matrices, J. Analyse Math., 2 (1952), 8892.Google Scholar