Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T04:58:16.621Z Has data issue: false hasContentIssue false

A Maximal Riemann Surface

Published online by Cambridge University Press:  22 January 2016

Martin Jurchescu*
Affiliation:
Rumanian Academy
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We let the notations be as in [3]. Then, in the category 6 of all bordered Riemann surfaces, the following inclusion diagram holds [3, Theorem 9]:

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1962

References

[1] Ahlfors, L. and Beurling, A.: Conformal invariants and function-theoretic null sets, Acta Math. 83, 101129 (1950).Google Scholar
[2] Constantinescu, C. and Cornea, A.: Über den idealen Rand und einige seiner Anwendungen bei der Klassifikation der Riemannschen Flächen, Nagoya Math. J. 13, 169233 (1958).Google Scholar
[3] Jurchescu, M.: Bordered Riemann surfaces, Math. Ann. 143, 143264 (1961).Google Scholar
[4] Kuramochi, Z.: On the behaviour of analytic functions on abstract Riemann surfaces, Osaka Math. J. 7, 7109 (1955).Google Scholar
[5] Sario, L.: Über Riemannsche Flächen mit hebbarem Rand, Ann. Acad. Sci. Fenn. Ser. A. I. 50, 501 (1948).Google Scholar
[6] Stoïlow, S.: Leçons sur les principes topologiques de la théorie des fonctions analytiques, Paris, Gauthier-Villars (2nd ed) (1956).Google Scholar
[7] Tamura, J.: On a theorem of Tsuji, Japanese J. Math. 29, 29138 (1959).Google Scholar