Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T12:32:26.479Z Has data issue: false hasContentIssue false

The martingale problem for pseudo-differential operators on infinite-dimensional spaces

Published online by Cambridge University Press:  22 January 2016

V. Bogachev
Affiliation:
Department of Mechanics and Mathematics, Moscow State University, 119899 Moscow, Russia
P. Lescot
Affiliation:
Département de Mathématiques, Université de Paris VI, 4 Place Jussieu, 75252 Paris, Cedex 05, France
M. Röckner
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A martingale problem for pseudo-differential operators on infinite dimensional spaces is formulated and the existence of a solution is proved. Applications to infinite dimensional “stable-like” processes are presented.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1999

References

[AH-K76] Albeverio, S. and Høegh-Krohn, R., Mathematical theory of Feynman path integrals, Lecture Notes Math. 523, Springer, Berlin, 1976.Google Scholar
[AH-K77] Albeverio, S. and Høegh-Krohn, R., Oscillatory integrals and the method of stationary phase in infinitely many dimensions, Inv. Math., 40 (1977), 59106.CrossRefGoogle Scholar
[B88] Bass, R. F., Uniqueness in law for pure jump Markov processes, Probab. Th. Rel. Fields, 79 (1988), 271287.Google Scholar
[BeF75] Berg, C. and Forst, G., Potential theory on locally compact Abelian groups, Ergeb. Math. Grenzgeb. II, Ser. Bd. 87, Springer, Berlin-Heidelberg-New York, 1975.Google Scholar
[BRS96] Bogachev, V., Röckner, M. and Schmuland, B., Generalized Mehler semigroups and applications, Probab. Th. Rel. Fields, 105 (1996), 193225.Google Scholar
[EK86] Ethier, S. N. and Kurtz, T. G., Markov processes, John Wiley & Sons, New York, 1986.Google Scholar
[Fom68] Fomin, S. V., Generalized functions of an infinite number of variables and their Fourier transforms, Uspehi Mathem. Nauk., 23 (1968), 215216, (in Russian).Google Scholar
[FuR97] Fuhrmann, M. and Röckner, M., Generalized Mehler semigroups: The non-Gaussian case, SFB-343 Bielefeld Preprint (1997).Google Scholar
[GV64] Gelfand, I. M. and Vilenkin, N. J., Generalized functions, Vol. 4, Some applications of harmonic analysis, Academic Press, New York, 1964.Google Scholar
[H92] Hoh, W., Das Martingaleproblem fu¨r eine Klasse von Pseudodifferentialopera-toren, Dissertation, Universität Erlangen-Nörnberg, 1992.Google Scholar
[H94] Hoh, W., The martingale problem for a class of pseudodifferential operators, Math. Ann., 300 (1994), 121147.CrossRefGoogle Scholar
[H95a] Hoh, W., Pseudo-differential operators with negative definite symbols and the martingaleproblem, Stochastics and Stochastic Reports, 55 (1995), 225252.Google Scholar
[H95b] Hoh, W., Feller semigroups generated by pseudo-differential operators, Dirichlet forms and stochastic processes (Z. M. Ma, M. Röckner and J. A. Yan, eds.), de Gruyter, Berlin (1995), pp. 109206.Google Scholar
[Hr82] Hrennikov, A. Yu., Equations with infinite-dimensional pseudodifferential operators, Soviet Math. Dokl., 26 (1982), 779784.Google Scholar
[Hr87] Hrennikov, A. Yu., Infinite-dimensional pseudo-differential operators, Izv. Akad. Nauk. Ser. Mat., 51 (1987), 12651291.Google Scholar
[JaL93] Jacob, N. and Leopold, H.-G., Pseudo-differential operators with variable order of differentiation generating Feller semigroups, Integr. Equat. Oper. Th., 17 (1993), 544553.CrossRefGoogle Scholar
[J86] Jakubowski, A., On the Skohorod topology, Ann. Inst. Henri Poincaré, 22 (1986), 263285.Google Scholar
[KN] Kikuchi, K. and Negoro, A., On Markov processes generated by pseudodifferential operators of variable order, Preprint.Google Scholar
[M83] Mitoma, I., Tightness of probabilities on C([0, 1];S′) and D([0, 1];S′), The Annals of Probability, 11 (1983), 989999.Google Scholar
[N94] Negoro, A., Stable-like processes. Construction of the transition density and behavior of sample paths neart = 0, Osaka J. Math., 31 (1994), 189214.Google Scholar
[S71] Schaefer, H. H., Topological vector spaces, Graduate texts in Mathematics, Springer, Berlin, 1971.Google Scholar
[Sch73] Schwartz, L., Radon measures on arbitrary topological spaces and cylindrical measures, Oxford University Press, London, 1973.Google Scholar
[St75] Stroock, D. W., Diffusion processes associated with Lévy generators, Z. Wahr-scheinlichkeitstheorie verw. Geb., 32 (1975), 209244.Google Scholar
[StV79] Stroock, D. W. and Varadhan, S. R. s., Multidimensional diffusion processes, Grundlehren der mathematischen Wissenschaften, 233, Springer, Berlin, 1979.Google Scholar
[Ts92] Tsuchiya, M., Lévy measure with generalized polar decomposition and the associated SDE with jumps, Stochastics and Stoch. Rep., 38 (1992), 95117.CrossRefGoogle Scholar
[VTC87] Vakhania, N. N., Tarieladze, V. I. and Chobanyan, S. A., Probability distributions on Banach spaces, Dordrecht: D. Reidel (1987).Google Scholar
[W84] Weron, A., Stable processes and stable measures: a survey, Probability Theory on Vector Spaces III, Lect. Notes in Math. 1080 (1984), pp. 306364.CrossRefGoogle Scholar