Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T09:46:19.151Z Has data issue: false hasContentIssue false

Malgrange’s vanishing theorem in 1-concave CR manifolds

Published online by Cambridge University Press:  22 January 2016

Christine Laurent-Thiébaut
Affiliation:
Institut Fourier, UMR 5582 CNRS-UJF, Laboratoire de Mathématiques, Université de Grenoble I, B.P. 74, F-38402 St-Martin d’HèresCedex, [email protected]
Jürgen Leiterer
Affiliation:
Institut für Mathematik, Humboldt-Universität, Ziegelstrasse 13 A, D-10117, Berlin (Allemagne), [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove a vanishing theorem for the -cohomology in top degree on 1-concave CR generic manifolds.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2000

References

[1] Airapetjan, R.A., Henkin, G.M., Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions, Russian Math. Survey, 39 (1984), 41118.CrossRefGoogle Scholar
[2] Barkatou, M.Y., Optimal regularity for on CR manifolds, Prépublication de l’Institut Fourier, 374, 1997, to appear in Journal of Geometric Analysis 2.Google Scholar
[3] Carli, De L., Nacinovich, M., Unique continuation in abstract pseudoconcave CR-manifolds, Preprint Dipartimento di Matematica, Pisa 1. 177. 1028, April 1997.Google Scholar
[4] Green, R.E., Wu, H., Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble), 25 (1975), 215235.CrossRefGoogle Scholar
[5] Guillemin, V., Pollack, A., Differential Topology, Prentice-Hall, 1974.Google Scholar
[6] Henkin, G.M., Solution des équations de Cauchy-Riemann tangentielles sur des variétés de Cauchy-Riemann q-convexes, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 2730.Google Scholar
[7] Henkin, G.M., The Hartogs-Bochner effect on CR manifolds, Soviet. Math. Dokl., 29 (1984), 7882.Google Scholar
[8] Henkin, G.M., Leiterer, J., Theory of functions on complex manifolds, Birkhäuser Verlag, 1984.Google Scholar
[9] Hill, C.D., Nacinovich, M., Pseudoconcave CR manifolds, Complex Analysis and Geometry, Lecture Notes in Pure and Appl. Math., 173, Marcel Dekker, New York (1996), 275297.Google Scholar
[10] Kohn, J.-J., Rossi, H., On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math., 81 (1965), 451472.CrossRefGoogle Scholar
[11] Laurent-Thiébaut, Ch., Résolution du à support compact et phénomène de Hartogs-Bochner dans les variétés CR, Proc. of Symp. in Pure Math., 52 (1991), 239249.CrossRefGoogle Scholar
[12] Laurent-Thiébaut, Ch., Leiterer, J., Andreotti-Grauert theory on real hypersurfaces, Quaderni della Scuola Normale Superiore di Pisa, 1995.Google Scholar
[13] Malgrange, B., Faisceaux sur des variétés analytiques réelles, Bull. Soc. Math. de France, 85 (1957), 231237.CrossRefGoogle Scholar
[14] Tumanov, A.E., Extension of CR functions into a wedge from a manifold of finite type, Math. USSR - Sb -, 64 (1989), 129140.CrossRefGoogle Scholar