Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T09:58:22.944Z Has data issue: false hasContentIssue false

Locally trivial fibrations with singular 1-dimensional Stein fiber over q-complete spaces

Published online by Cambridge University Press:  22 January 2016

Mihnea Colţoiu
Affiliation:
Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO 70700, Bucharest, Romania, [email protected]
Viorel Vâjâitu
Affiliation:
Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO 70700, Bucharest, Romania, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In connection with Serre’s problem, we consider a locally trivial analytic fibration π : EB of complex spaces with typical fiber X. We show that if X is a Stein curve and B is q-complete, then E is q-complete.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2000

References

[1] Andreotti, A. and Grauert, H., Théorèmes definitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193259.CrossRefGoogle Scholar
[2] Ballico, E., Coverings of complex spaces and q-completeness, Riv. Mat. Univ. Parma, (4), 7 (1981), 443452.Google Scholar
[3] Coeuré, G. and Loeb, J.J., A counterexample to the Serre problem with a bounded domain of C2 as fiber, Annals of Math., 122 (1985), 329334.CrossRefGoogle Scholar
[4] Colţoiu, M., Complete pluripolar sets, J. reine angew. Math., 412 (1992), 108112.Google Scholar
[5] Colţoiu, M., n-concavity of n-dimensional complex spaces, Math. Z., 210 (1992), 203206.CrossRefGoogle Scholar
[6] Colţoiu, M., q-convexity. A survey., In: Complex analysis and geometry, Pitman Research Notes in Mathematics Series, 366 (1997), 8393.Google Scholar
[7] Demailly, J.-P.,, Un example de fibre holomorphe non de Stein à fibre C2 ayant pour base le disque ou le plan, Invent. Math., 48 (1978), 293302.CrossRefGoogle Scholar
[8] Demailly, J.-P.,, Cohomology of q-convex spaces in top degrees, Math. Z., 204 (1990), 283295.CrossRefGoogle Scholar
[9] Hirschowitz, A., Domaines de Stein et fonctions holomorphes bornées, Math. Ann., 213 (1975), 185193.CrossRefGoogle Scholar
[10] Kobayashi, S., Hyperbolic manifolds and holomorphic mappings, New York, Marcel Dekker, 1970.Google Scholar
[11] Lang, S., Introduction to complex hyperbolic spaces, Springer Verlag, 1987.CrossRefGoogle Scholar
[12] Barz, P. Le, A propos des revêtements ramifiés d’espace de Stein, Math. Ann., 222 (1976), 6369.CrossRefGoogle Scholar
[13] Mok, N., The Serre problem on Riemann surfaces, Math. Ann., 258 (1981), 145168.CrossRefGoogle Scholar
[14] Narasimhan, R., A note on Stein spaces and their normalizations, Ann. Sc. Norm. Sup. Pisa, 16 (1962), 327333.Google Scholar
[15] Peternell, M., Algebraische Varietäten und q-vollständige komplexe Räume, Math. Z., 200 (1989), 547581.CrossRefGoogle Scholar
[16] Royden, H., Holomorphic fiber bundles with hyperbolic fiber, Proc. A.M.S., 43 (1974), 311312.CrossRefGoogle Scholar
[17] Serre, J.-P.,, Quelques problèmes globaux relatifs aux variétés de Stein, Colloque sur les fonctions de plusieurs variables, Bruxelles (1953), 5368.Google Scholar
[18] Sibony, N., Fibrés holomorphes et métrique de Carathéodory, C.R.A.S., 279 (1974), 261264.Google Scholar
[19] Siu, Y.-T.,, All plane domains are Banach-Stein, Manuscripta math., 14 (1974), 101105.CrossRefGoogle Scholar
[20] Siu, Y.-T.,, Holomorphic fibre bundles whose fibers are bounded Stein domains with zero first Betti number, Math. Ann., 219 (1976), 171192.CrossRefGoogle Scholar
[21] Skoda, H., Fibres holomorphes à base et à fibre de Stein, Invent. Math., 43 (1977), 97107.CrossRefGoogle Scholar
[22] Stehlé, J.-L., Fonctions plurisousharmoniques et convexité holomorphe dans certain fibres analytiques, Lecture Notes in Math., 474 Sém. P. Lelong 1973/74, 155180.Google Scholar
[23] Stein, K., Uberlagerungen holomorph vollständiger komplexer Räume, Arch. Math., 7 (1956), 354361.CrossRefGoogle Scholar
[24] Vâjâitu, V., Approximation theorems and homology of q-Runge pairs in complex spaces, J. reine angew. Math., 449 (1994), 179199.Google Scholar
[25] Vâjâitu, V., Some convexity properties of proper morphisms of complex spaces, Math. Z., 217 (1994), 215245.CrossRefGoogle Scholar
[26] Vâjâitu, V., One dimensional fibering over q-complete spaces, Nagoya Math. J, 151 (1998), 99106.CrossRefGoogle Scholar