Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T12:28:09.108Z Has data issue: false hasContentIssue false

Lévy’s Brownian motion; Total positivity structure of M(t)-process and deterministic character

Published online by Cambridge University Press:  22 January 2016

Akio Noda*
Affiliation:
Department of Mathematics, Aichi University of Education, Kariya 448, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X = {X(A); A ∈ Q} be a Lévy’s Brownian motion with the basic time parameter space Q, where Q is taken to be the n-dimensional metric space Qn,k of constant curvature (2 ≤ n ≤ ∞, — ∞ < k: < ∞), i.e., Q is one of

(a) Euclidean space for k = 0, (b) sphere for k > 0 and

(c) real hyperbolic space for K < 0.

The increment X(A) — X(B) is, by definition, Gaussian in distribution and has mean 0 and variance d(A, B), the distance between A and B. The existence of such a Gaussian random field is well known ([3], [4], [16] and [23]).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1984

References

[ 1 ] Askey, R. and Bingham, N. H., Gaussian processes on compact symmetric spaces, Z. Wahrsch. und Verw. Gebiete, 37 (1976), 127143.CrossRefGoogle Scholar
[ 2 ] Berman, S. M., Isotropic Gaussian processes on the Hilbert sphere, Ann. Probab., 3 (1980), 10931106.Google Scholar
[ 3 ] Faraut, J. et Harzallah, K., Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier (Grenoble), 24 (1974), 171217.CrossRefGoogle Scholar
[ 4 ] Gangolli, R., Positive definite kernels on homogeneous spaces and certain stochastic processes related to Levy’s Brownian motion of several parameters, Ann. Inst. H. Poincaré Sect. B, 3 (1967), 121225.Google Scholar
[ 5 ] Hida, T., Canonical representations of Gaussian processes and their applications, Mem. Coll. Sci. Univ. Kyoto, Ser. A, 33, Math., (1960), 109155.Google Scholar
[ 6 ] Hida, T. and Hitsuda, M., Gaussian processes (in Japanese), Kinokuniya Book Store, Tokyo, 1976.Google Scholar
[ 7 ] Karlin, S., Total positivity, Vol. 1, Stanford University Press, Stanford, California, 1968.Google Scholar
[ 8 ] Karlin, S. and Ziegler, Z., Chebyshevian spline functions, SIAM J. Numer. Anal., 3 (1966), 514543.Google Scholar
[ 9 ] Levin, B. Ja., Distribution of zeros of entire functions, Transl. Math. Monographs Vol. 5, Amer. Math. Soc, Providence, Rhode Island, 1964.Google Scholar
[10] Lévy, P., Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris, 1965.Google Scholar
[11] Lévy, P., A special problem of Brownian motion, and a general theory of Gaussian random functions, Proc. Third Berkeley Symp. on Math. Statist, and Probability, Vol. 2 (1956), 133175.Google Scholar
[12] Lévy, P., Le mouvement brownien fonction d’un point de la sphère de Riemann, Rend. Circ. Mat. Palermo (2) 8 (1959), 114.CrossRefGoogle Scholar
[13] Lévy, P., Le déterminisme de la fonction brownienne dans l’espace de Hilbert, Ann. Sci. École Norm. Sup., 79 (1962), 377398; Second mémoire, 80 (1963), 193212.CrossRefGoogle Scholar
[14] Luxemburg, W. A. and Korevaar, J., Entire functions and Müntz-Szász type approximation, Trans. Amer. Math. Soc, 157 (1971), 2337.Google Scholar
[15] McKean, H. P. Jr., Brownian motion with a several-dimensional time, Theory Probab. Appl., 8 (1963), 335354.CrossRefGoogle Scholar
[16] Molcan, G. M., The Markov property of Levy fields on spaces of constant curvature, Soviet Math. Dokl., 16 (1975), 528532.Google Scholar
[17] Molcan, G. M., On homogeneous random fields on symmetric spaces of rank one, Theory Probab. Math. Statist., 21 (1980), 143168.Google Scholar
[18] Noda, A., Lévy’s Brownian motion and total positivity, Proc. Fourth Japan-USSR Symp. on Probability Theory and Math. Statist., Lecture Notes in Math., Springer, Berlin (to appear).Google Scholar
[19] Schoenberg, I. J., Metric spaces and completely monotone functions, Ann. of Math., 39 (1938), 811841.CrossRefGoogle Scholar
[20] Schoenberg, I. J., Positive definite functions on spheres, Duke Math. J., 9 (1942), 96108.Google Scholar
[21] Schwartz, L., Etude des sommes d’exponentielles, Publications de l’Institut de Mathématique de l’Université de Strasbourg V, Hermann, Paris, 1959.Google Scholar
[22] Szegö, G., Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. Vol. 23, Amer. Math. Soc, Providence, Rhode Island, 1939.Google Scholar
[23] Takenaka, S., Kubo, I. and Urakawa, H., Brownian motion parametrized with metric space of constant curvature, Nagoya Math. J., 82 (1981), 131140.Google Scholar
[24] Vilenkin, N. J., Special functions and the theory of group representations, Transl. Math. Monographs Vol. 22, Amer. Math. Soc, Providence, Rhode Island, 1968.Google Scholar
[25] Wong, E., Stochastic processes in information and dynamical systems, McGraw-Hill, New York, 1971.Google Scholar
[26] Yaglom, A. M., Some classes of random fields in n-dimensional space related to stationary random processes, Theory Probab. Appl., 2 (1957), 273320.CrossRefGoogle Scholar
[27] Young, R. M., An introduction to nonharmonic Fourier series, Academic Press, New York, 1980.Google Scholar