Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T06:21:14.428Z Has data issue: false hasContentIssue false

A Lemma which Distinguishes Minimal Logics from Other Logics

Published online by Cambridge University Press:  22 January 2016

Katuzi Ono*
Affiliation:
Mathematical Institute, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In my joint work with J. Ito [7], we have pointed out that the following property (called ASSUMPTION REMOVABILITY) is characteristic of positive logics LO, LP, and LQ:

ASSUMPTION REMOVABILITY. Ifis provable for any pair of propositions andhaving no primitive notions (proposition-, predicate-, and relation-symbols) in common, thenis also provable.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1966

References

[1] Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb. Log., 22 (1957), 250268.CrossRefGoogle Scholar
[2] Curry, H. B.: Foundations of mathematical logic. New-York (1963).Google Scholar
[3] Gentzen, G.: Untersuchungen über das logische Schliessen. Math. Z., 39 (1934), 176210, 405431.Google Scholar
[4] Johansson, I.: Der Minimalkalkül, ein reduzierter intuitionistischen Formalismus. Compositio Math., 4 (1936), 119136.Google Scholar
[5] Lorenzen, P.: Einführung in die operative Logik und Mathematik. Berlin-Göttingen-Heidelberg, (1955).Google Scholar
[6] Ono, K.: On universal character of the primitive logic. Nagoya Math. J., 27-1 (1966), 331353.Google Scholar
[7] Ono, K. and Ito, J.: On a charcteristic feature of the positive logics. Nagoya Math. J., 28 (1966), 193196.CrossRefGoogle Scholar
[8] Schütte, K.: Der Interpolationssatz der intuitionistischen Prädikatenlogik, Math. Ann., 148 (1962), 192200.Google Scholar
[9] Umezawa, T.: On logics intermediate between intuitionistic and classical predicate logic. J. Symb. Log., 24 (1959), 141153.CrossRefGoogle Scholar