Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T23:11:26.161Z Has data issue: false hasContentIssue false

La Dimension Cohomologique des Surfaces Algebriques

Published online by Cambridge University Press:  22 January 2016

Hiroshi Umemura*
Affiliation:
Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

En Géométrie Algébrique on a un critère pour qu’une surface moins une courbe soit affiine (Hartshorne (5)). Dans (5), on demande s’il existe un analogue analytique. Le but de cet article est de donner une condition numérique necessaire pour les surfaces complexes compactes (Théorème 1) et une condition suffisante pour les surfaces réglées (Théorème 2).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1972

References

Bibliographie

[1] Andreotti, A. et Grauert, H., Theoreme de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193259.Google Scholar
[2] Atiyah, M. F., Complex fibre bundles and ruled surfaces, Pro. London Math. Soc, (3) 5 (1955), 407434.Google Scholar
[3] Atiyah, M. F., Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc, 85 (1957), 181207.Google Scholar
[4] Grauert, H., Über Modifikationen und exzeptionelle analytische Mengen, Nath. Ann., 146 (1962), 331368.Google Scholar
[5] Hartshorne, R., Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, 156, Springer.Google Scholar
[6] Hayashida, T. and Nishi, M., Existence of curves of genus two on a product of two elliptic curves, Jour, of Math. Soc. of Japan, 17 (1965).Google Scholar
[7] Kodaira, K., On compact complex analytic surfaces, I, Ann. of Math., 71 (1960).Google Scholar
[8] Manin, Yu. I., Lectures on the K-functor in algebraic geometry, Russian Mathematical Surveys, 24 (1969).CrossRefGoogle Scholar
[9] Serre, J.-P., Quelques problemes globaux relatif aux varietes de Stein, Colloque sur les fonctions de plusieurs variables, C.B.R.M. Bruxelles, (1935), 5768.Google Scholar