Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T09:52:09.374Z Has data issue: false hasContentIssue false

KRONECKER LIMIT FUNCTIONS AND AN EXTENSION OF THE ROHRLICH–JENSEN FORMULA

Published online by Cambridge University Press:  11 April 2023

JAMES W. COGDELL
Affiliation:
Department of Mathematics Ohio State University 231 West 18th Avenue Columbus Ohio 43210 USA [email protected]
JAY JORGENSON*
Affiliation:
Department of Mathematics The City College of New York Convent Avenue at 138th Street New York New York, 10031 USA
LEJLA SMAJLOVIĆ
Affiliation:
Department of Mathematics University of Sarajevo Zmaja od Bosne 35 71 000 Sarajevo Bosnia and Herzegovina [email protected]

Abstract

In [20], Rohrlich proved a modular analog of Jensen’s formula. Under certain conditions, the Rohrlich–Jensen formula expresses an integral of the log-norm $\log \Vert f \Vert $ of a ${\mathrm {PSL}}(2,{\mathbb {Z}})$ modular form f in terms of the Dedekind Delta function evaluated at the divisor of f. In [2], the authors re-interpreted the Rohrlich–Jensen formula as evaluating a regularized inner product of $\log \Vert f \Vert $ and extended the result to compute a regularized inner product of $\log \Vert f \Vert $ with what amounts to powers of the Hauptmodul of $\mathrm {PSL}(2,{\mathbb {Z}})$. In the present article, we revisit the Rohrlich–Jensen formula and prove that in the case of any Fuchsian group of the first kind with one cusp it can be viewed as a regularized inner product of special values of two Poincaré series, one of which is the Niebur–Poincaré series and the other is the resolvent kernel of the Laplacian. The regularized inner product can be seen as a type of Maass–Selberg relation. In this form, we develop a Rohrlich–Jensen formula associated with any Fuchsian group $\Gamma $ of the first kind with one cusp by employing a type of Kronecker limit formula associated with the resolvent kernel. We present two examples of our main result: First, when $\Gamma $ is the full modular group ${\mathrm {PSL}}(2,{\mathbb {Z}})$, thus reproving the theorems from [2]; and second when $\Gamma $ is an Atkin–Lehner group $\Gamma _{0}(N)^+$, where explicit computations of inner products are given for certain levels N when the quotient space $\overline {\Gamma _{0}(N)^+}\backslash \mathbb {H}$ has genus zero, one, and two.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

J.J. acknowledges grant support from several PSC-CUNY Awards, which are jointly funded by the Professional Staff Congress and The City University of New York.

References

Atkin, A. O. L. and Lehner, J., Hecke operators on ${\varGamma}_0(m)$ , Math. Ann. 185 (1970), 134160.10.1007/BF01359701CrossRefGoogle Scholar
Bringmann, K. and Kane, B., An extension of the Rohrlich’s theorem to the $j$ -function , Forum Math. Sigma 8 (2020), e3, 33 pp.10.1017/fms.2019.46CrossRefGoogle Scholar
Cogdell, J., Jorgenson, J., and Smajlović, L., Spectral construction of non-holomorphic Eisenstein-type series and their Kronecker limit formula , London Math. Soc. Lecture Note Ser. 459 (2020), 393427.Google Scholar
Conway, J. H. and Norton, S. P., Monstrous moonshine , Bull. Lond. Math. Soc. 11 (1979), 308339.10.1112/blms/11.3.308CrossRefGoogle Scholar
Cummins, C., Congruence subgroups of groups commensurable with $\mathrm{PSL}\left(2,\mathbb{Z}\right)$ of genus $0$ and $1$ , Exp. Math. 13 (2004), 361382.10.1080/10586458.2004.10504547CrossRefGoogle Scholar
Duke, W., Imamoğlu, Ö., and Tóth, Á., Regularized inner products of modular functions , Ramanujan J. 41 (2016), 1329.10.1007/s11139-013-9544-5CrossRefGoogle Scholar
Goldstein, L. J., Dedekind sums for a Fuchsian group. I , Nagoya Math. J. 80 (1973), 2147.10.1017/S0027763000015567CrossRefGoogle Scholar
Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series and Products, Elsevier Academic Press, Amsterdam, 2007.Google Scholar
Hejhal, D., The Selberg Trace Formula for $\mathit{\mathsf{PSL}}\left(2,\mathbb{R}\right)$ . II, Lect. Notes Math. 1001, Springer, Berlin, 1983.Google Scholar
Herrero, S., Imamoğlu, Ö, von Pippich, A.-M., and Tóth, Á., A Jensen–Rohrlich type formula for the hyperbolic 3-space , Trans. Amer. Math. Soc. 371 (2019), 64216446.10.1090/tran/7484CrossRefGoogle Scholar
Iwaniec, H., Spectral Methods of Automorphic Forms, Grad. Stud. Math. 53, American Mathematical Society, Providence, RI, 2002.10.1090/gsm/053CrossRefGoogle Scholar
Jeon, D., Kang, S. Y., and Kim, C. H., Cycle integrals of a sesqui-harmonic Maass form of weight zero , J. Number Theory 141 (2014), 92108.10.1016/j.jnt.2014.01.008CrossRefGoogle Scholar
Jorgenson, J., Smajlović, L., and Then, H., Kronecker’s limit formula, holomorphic modular functions and $q$ -expansions on certain arithmetic groups , Exp. Math. 25 (2016), 295319.10.1080/10586458.2015.1053161CrossRefGoogle Scholar
Jorgenson, J., Smajlović, L., and Then, H., Certain aspects of holomorphic function theory on some genus zero arithmetic groups , LMS J. Comput. Math. 19 (2016), 360381.10.1112/S1461157016000425CrossRefGoogle Scholar
Jorgenson, J., Smajlović, L., and Then, H., web page with computational data is located at the following site. http://www.efsa.unsa.ba/lejla.smajlovic/jst2/.Google Scholar
Jorgenson, J., von Pippich, A.-M., and Smajlović, L., Applications of Kronecker’s limit formula for elliptic Eisenstein series , Ann. Math. Qué. 43 (2019), 99124.10.1007/s40316-017-0094-xCrossRefGoogle Scholar
Lang, S., Introduction to Complex Hyperbolic Spaces, Springer, Berlin, 1987.10.1007/978-1-4757-1945-1CrossRefGoogle Scholar
Lang, S., Complex Analysis, 4th ed., Grad. Texts Math. 103, Springer, New York, 1999.10.1007/978-1-4757-3083-8CrossRefGoogle Scholar
Niebur, D., A class of nonanalytic automorphic functions , Nagoya Math. J. 52 (1973), 133145.10.1017/S0027763000015932CrossRefGoogle Scholar
Rohrlich, D. E., A modular version of Jensen’s formula , Math. Proc. Cambridge Philos. Soc. 95 (1984), 1520.10.1017/S0305004100061259CrossRefGoogle Scholar
Serre, J. P., A Course in Arithmetic, Grad. Texts Math. 7, Springer, New York, 1973.10.1007/978-1-4684-9884-4CrossRefGoogle Scholar
Siegel, C. L., Advanced Analytic Number Theory, Tata Inst. Fundam. Res. Stud. Math. 9, Tata Institute of Fundamental Research, Bombay, 1980.Google Scholar
Vojta, P., Diophantine Approximations and Value Distribution Theory, Lect. Notes Math. 1239, Springer, Berlin–New York, 1987.10.1007/BFb0072989CrossRefGoogle Scholar
von Pippich, A. M., The arithmetic of elliptic Eisenstein series. Ph.D. thesis, Humboldt-Universität zu, Berlin, 2010.Google Scholar
von Pippich, A.-M., A Kronecker limit type formula for elliptic Eisenstein series, preprint, arXiv:1604.00811 [math.NT]Google Scholar