Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T00:07:45.310Z Has data issue: false hasContentIssue false

Julia directions of entire functions of smooth growth

Published online by Cambridge University Press:  22 January 2016

H. Yoshida*
Affiliation:
Department of Mathematics, Faculty of Science, Chiba University, Yayoi-cho, Chiba 260Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f(z) be entire i.e. analytic in the finite whole plane Z. The order of f(z) is defined as

where A ray χ(θ) = {z = r·e : 0 < r < + ∞} is called a Julia direction of f(z) if, in any open sector containing the ray, f(z) takes all values of Z, with at most one finite exceptional value, infinitely often.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1982

References

[1] Anderson, J. M., Asymptotic values of meromorphic functions of smooth growth, Glasgow Math. J., 20 (1979), 155162.CrossRefGoogle Scholar
[2] Anderson, J. M. and Clunie, J., Entire functions of finite order and lines of Julia, Math. Z., 112 (1969), 5973.CrossRefGoogle Scholar
[3] Cartwright, M. L., Integral functions, Cambridge, 1956.Google Scholar
[4] Clunie, J. and Hayman, W. K., The spherical derivative of integral and meormorphic functions, Comment. Math. Helv., 40 (1966), 117148.CrossRefGoogle Scholar
[5] Denjoy, A., Sur un théorème de Wiman, C. R. Acad. Sci., 193 (1931), 828830.Google Scholar
[6] Drasin, D. and Weitsman, A., On the Julia directions and Borel directions of entire functions, Proc. London Math. Soc., 32 (1976), 199212.CrossRefGoogle Scholar
[7] Edrei, A. and Fuchs, W. H. J., Entire and meromorphic functions with asymptotically prescribed characteristic, Canad. J. Math., 17 (1965), 383395.CrossRefGoogle Scholar
[8] Hayman, W. K., Meromorphic functions, Oxford, 1964.Google Scholar
[9] Hayman, W. K., On Iversen’s theorem for meromorphic functions with few poles, Acta Math., 141 (1978), 115145.CrossRefGoogle Scholar
[10] Kjellberg, B., On certain integral and harmonic functions, Upsala, 1948 (Dissertation).Google Scholar
[11] Lehto, O., The spherical derivative of a meromorphic function in the neighborhood of an isolated essential singularity, Comment. Math. Helv., 33 (1959), 196205.CrossRefGoogle Scholar
[12] Levin, B., Distribution of the zeros of entire functions, Amer. Math. Soc. Transl., 5 (1964).Google Scholar
[13] Ostrowski, A., Über folgen analytischer Funktionen und einige Verschärfungen des Picardschen Satzes, Math. Z., 24 (1926), 215258.CrossRefGoogle Scholar
[14] Polya, G., Untersuchungen über Lücken und Singularitäten von Potenzreihen, Math. Z., 29 (1929), 549640.CrossRefGoogle Scholar
[15] Valiron, G., Sur les fonctions entières d’ordre fini et d’ordre nul, et en particulier les fonctions à correspondance régulière, Ann. Fac. Sci. Toulouse, 5 (1913), 117208.CrossRefGoogle Scholar