Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T23:44:36.012Z Has data issue: false hasContentIssue false

Irregular Canonical Double Surfaces

Published online by Cambridge University Press:  22 January 2016

Margarida Mendes Lopes
Affiliation:
Centro de Algebra, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1699 Lisboa Codex, Portugal, [email protected]
Rita Pardini
Affiliation:
Dipartimento di Matematica, Università di Pisa, Via Buonarroti 2, 56127 Pisa, Italy, [email protected]
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We classify minimal irregular surfaces of general type X with Kx ample and such that the canonical map is 2-to-l onto a canonically embedded surface.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1998

References

[AK] Ashikaga, T. and Konno, K., Algebraic surfaces of general type with Tohôku Math. J., 42 (1990), 517536.Google Scholar
[Ba] Barlow, R., A simply connected surface of general type with pg = 0, Invent, math., 79 (1985), 293301.CrossRefGoogle Scholar
[Bel] Beauville, A., L’application canonique pour les surfaces de type général. Invent. math., 55 (1979), 121140.CrossRefGoogle Scholar
[Be2] Beauville, A., Sur le nombre maximum des points doubles d’une surface dans P3 (μ(5) = 31), Journeés de Géométrie algebrique d’Angers 1979, Beauville, A. ed., 207215.Google Scholar
[BPV] Barth, W., Peters, C. and de Ven, A. Van, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 4, Springer-Verlag, Berlin (1984).Google Scholar
[BS] Bayer, D. and Stillman, M., Macaulay: a computer algebra system.Google Scholar
[Cal] Catanese, F., Babbage’s conjecture, contact of surfaces, symmetric determinantal varieties and applications, Invent, math., 63 (1981), 433465.CrossRefGoogle Scholar
[Ca2] Catanese, F., Canonical rings and “special” surfaces of general type, Proc. of Symposia in Pure Math., 46 (1987), 175194.CrossRefGoogle Scholar
[Ci] Ciliberto, C., Superficie algebriche complesse: idee e metodi della classificazione, Atti del convegno di Geometria Algebrica, Genova -Nervi, 2-17 aprile 1984, 39158.Google Scholar
[GH] Griffiths, P. and Harris, J., Principles of algebraic geometry, John Wiley &; Sons, New York, 1978.Google Scholar
[Ha] Harris, J., A bound on the geometric genus of projective varieties, Ann. Sc. Norm. Sup. Pisa, IV serie, VIII (1981), 3568.Google Scholar
[Ho2] Horikawa, E., Algebraic surfaces with small , II, Invent, math., 37 (1976), 121155.CrossRefGoogle Scholar
[Ho4] Horikawa, E., Algebraic surfaces with small , IV, Invent, math., 50 (1979), 103128.CrossRefGoogle Scholar
[Ko] Konno, K., Even canonical surfaces with small K2, I, Nagoya Math. J., 129 (1993), 115146.CrossRefGoogle Scholar
[LB] Lange, H. and Birkenhake, C., Complex abelian varieties, Grundlehren der mathematischen Wissenschaften, Vol. 302, Springer-Verlag, Berlin (1992).Google Scholar
[Mi] Miranda, R., On canonical surfaces of general type with K2 = 3χ − 10, Math. Z., 198 (1988), 8293.CrossRefGoogle Scholar
[Se] Serrano, F., Fibrations on algebraic surfaces, Geometry of Complex Projective Varieties, Cetraro (Italy), June 1996, Lanteri, A., Palleschi, M., Struppa, D. eds., 89102.Google Scholar
[VZ] Geer, G. Van der and Zagier, D., The Hilbert modular group for the field(), Invent, math., 42 (1978), 93134.CrossRefGoogle Scholar