Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Aschbacher, Michael
1976.
Finite groups in which the generalized fitting group of the centraliser of some involution is symplectic but not extraspecial.
Communications in Algebra,
Vol. 4,
Issue. 7,
p.
595.
Beisiegel, Bert
1977.
Semi-extraspeziellep-Gruppen.
Mathematische Zeitschrift,
Vol. 156,
Issue. 3,
p.
247.
Seitz, Gary M
1977.
Standard subgroups of type Ln(2a).
Journal of Algebra,
Vol. 48,
Issue. 2,
p.
417.
Solomon, Ronald
1978.
Some standard components of sporadic type.
Journal of Algebra,
Vol. 53,
Issue. 1,
p.
93.
Stroth, Gernot
1978.
Einige Gruppen vom Charakteristik 2-Typ.
Journal of Algebra,
Vol. 51,
Issue. 1,
p.
107.
Lempken, Wolfgang
1978.
A 2-local characterization of Janko's simple group J4.
Journal of Algebra,
Vol. 55,
Issue. 2,
p.
403.
Cooperstein, Bruce N.
1978.
An enemies list for factorization theorems.
Communications in Algebra,
Vol. 6,
Issue. 12,
p.
1239.
Stroth, G
1978.
A fusion lemma for a certain class of groups of characteristic 2-type.
Journal of Algebra,
Vol. 55,
Issue. 2,
p.
293.
Aschbacher, Michael
1978.
Thin finite simple groups.
Journal of Algebra,
Vol. 54,
Issue. 1,
p.
50.
Guteman, Martin M.
1979.
A characteriazation of F4(4n) as a group with standard 3-component B3(4n).
Communications in Algebra,
Vol. 7,
Issue. 10,
p.
1079.
Bierbrauer, Jürgen
1979.
A characterization of the “baby monster” F2, including a note on 2E6(2).
Journal of Algebra,
Vol. 56,
Issue. 2,
p.
384.
Yamada, Hiromichi
1979.
Standard subgroups isomorphic to PSU(5, 2).
Journal of Algebra,
Vol. 58,
Issue. 2,
p.
527.
Seitz, Gary M.
1979.
Subgroups of finite groups of Lie type.
Journal of Algebra,
Vol. 61,
Issue. 1,
p.
16.
Yamada, Hiromichi
1979.
Standard subgroups isomorphic to PSU(6, 2) or SU(6, 2).
Journal of Algebra,
Vol. 61,
Issue. 1,
p.
82.
Smith, Stephen D
1979.
Large extraspecial subgroups of widths 4 and 6.
Journal of Algebra,
Vol. 58,
Issue. 2,
p.
251.
Wester, Michael
1979.
Endliche Gruppen, die eine Involution z besitzen, so daβ F∗(C(z)) das direkte produkt einer extraspeziellen 2-Gruppe von kleiner Weite mit einer elementar-abelschen 2-Gruppe ist,I.
Journal of Algebra,
Vol. 60,
Issue. 2,
p.
321.
Finkelstein, Larry
and
Solomon, Ronald
1979.
Finite simple groups with a standard 3-component of type Sp(2n, 2), n ⩾ 4.
Journal of Algebra,
Vol. 59,
Issue. 2,
p.
466.
Gorenstein, Daniel
1979.
The classification of finite simple groups I. Simple groups and local analysis.
Bulletin of the American Mathematical Society,
Vol. 1,
Issue. 1,
p.
43.
Kantor, William M.
1979.
Subgroups of classical groups generated by long root elements.
Transactions of the American Mathematical Society,
Vol. 248,
Issue. 2,
p.
347.
Stroth, Gernot
1980.
Endliche Gruppen, die eine maximale 2-lokale untergruppe besitzen, so daβ Z(F∗(M)) eine TI — Menge in G ist.
Journal of Algebra,
Vol. 64,
Issue. 2,
p.
460.