Published online by Cambridge University Press: 22 January 2016
By the coadjoint representation of a connected Lie group G with the Lie algebra g we mean the representation CoAd(g) = tAd(g-1) in the dual space g*. Imitating Chevalley’s argument for complex semi-simple Lie algebras, we shall show that the CoAd (G)-invariant polynomial algebra on g* is finitely generated by algebraically independent polynomials when G is the inhomogeneous linear group IU(n) or ISO(n). In view of a well-known theorem [8, p. 183] our results imply that the centers of the enveloping algebras for the (or the complexified) Lie algebras of these groups are also finitely generated. Recently much more inhomogeneous groups have been studied in a similar context [2]. Our results, however, are further reaching as far as the groups IU(n) and ISO(n) are concerned [cf. 3, 4, 6, 7, 9].