Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T23:01:38.350Z Has data issue: false hasContentIssue false

Integration of local actions on holomorphic fiber spaces

Published online by Cambridge University Press:  22 January 2016

Peter Heinzner
Affiliation:
Fakultät und Institut für Mathematik, Ruhr Universität Bochum, Universitätssraβe 150, D-44780, Bochum, Federal Republic of Germany, [email protected]
Andrea Iannuzzi
Affiliation:
Fakultät und Institut für Mathematik, Ruhr Universität Bochum, Universitätssraβe 150, D-44780 Bochum, Federal Republic of Germany, [email protected]
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is proved that every holomorphically convex complex space endowed with an action of a compact Lie group K can be realized as an open K-stable subspace of a holomorphically convex space endowed with a holomorphic action of the complexified group KC. Similar results are obtained for holomorphic if-bundles over such spaces.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1997

References

[A] Abels, H., Parallelizability of proper actions, global K-slices and maximal compact subgroups, Math. Ann., 212 (1974), 119.Google Scholar
[GH] Gilligan, B. and Heinzner, P., Globalization of holomorphic actions on principal bundles, to appear in Mathematische Nachrichten, Preprint Bochum (1995).Google Scholar
[GR] Grauert, V. and Remmert, R., Coherent Analytic Sheaves, Springer-Verlag, Berlin Heidelberg New York Tokio, 1984.Google Scholar
[GS] Guillmin, V. and Sternberg, S., Geometric quantization and multiplicities of group representations, Invent. Math., 67 (1982), 515538.Google Scholar
[HI] Heinzner, P., Geometric invariant theory on Stein spaces, Math. Ann., 289 (1991), 631662.Google Scholar
[H2] Heinzner, P., Equivariant holomorphic extensions of real analytic manifold, Bull. Soc. Math. France, 121 (1993), 445463.CrossRefGoogle Scholar
[HHK] Heinzner, P., Huckleberry, A. and Kutzchebauch, F., Ablels Theorem in the real analytic case and applications to complexifications, to appear in Complex Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Marcel Decker, 1995, pp. 229273.Google Scholar
[HHL] Heinzner, P., Huckleberry, A. and Loose, F., Kählerian extension of the symplectic reduction, J. reine und angew. Math., 455 (1994), 123140.Google Scholar
[HK] Heinzner, P. and Kutzschebauch, F., An equivariant version of GrauerVs Oka Principle, Invent. Math., 119 (1995), 317346.Google Scholar
[HL] Heinzner, P. and Loose, F., Reduction of complex Hamiltonian G-spaces, Geometric and Functional Analysis, 4 (1994), 288297.CrossRefGoogle Scholar
[Ho] Hochschild, G., The structure of Lie groups, Holden-Day, San Francisco London Amsterdam, 1965.Google Scholar
[K] Kaup, W., Infinitesimale Transformationengruppen kmoplexer Räume, Math.Ann., 160 (1965), 7292.CrossRefGoogle Scholar
[Ki] Kirwan, F. C., Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes 31, Princeton University Press, 1984.Google Scholar
[KN] Kobayashi, S. and Nomizu, K., Foundations of differential geometry I, Interscience Publishers, New York London, 1963.Google Scholar
[L] Luna, D., Slices étales, Mem. Soc. Math. France, 33 (1973), 81105.Google Scholar
[N] Ness, D., A stratification of the null cone via the moment map, Amer. J. Math., 106 (1984), 12811325.CrossRefGoogle Scholar
[P] Palais, R. S., A global formulation of the Lie theory of transformation groups, Mem. of the Amer. Math. Soc. (1955).Google Scholar
[R] Rossi, H., On envelopes of holomorphy, Communications on pure and applied mathematics, 16 (1963), 917.Google Scholar
[S] Sjamaar, R., Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. of Math., 141 (1995), 87129.Google Scholar
[SL] Sjamaar, R. and Lerman, E., Stratified sympletic spaces and reduction, Ann. of Math., 134 (1991), 375422.Google Scholar
[St] Stein, K., Uberlagerungen holomorph-vollständiger kmoplexer Räume, Arch. Math., 7 (1956), 354361.Google Scholar
[Y] Yang, P., Geometry of tube domains, Proceedings of Symposia in Pure Mathematics, 41 (1984), 277283.Google Scholar