Article contents
INTEGRAL CLOSURE OF STRONGLY GOLOD IDEALS
Published online by Cambridge University Press: 18 July 2019
Abstract
We prove that the integral closure of a strongly Golod ideal in a polynomial ring over a field of characteristic zero is strongly Golod, positively answering a question of Huneke. More generally, the rational power $I_{\unicode[STIX]{x1D6FC}}$ of an arbitrary homogeneous ideal is strongly Golod for $\unicode[STIX]{x1D6FC}\geqslant 2$ and, if $I$ is strongly Golod, then $I_{\unicode[STIX]{x1D6FC}}$ is strongly Golod for $\unicode[STIX]{x1D6FC}\geqslant 1$. We also show that all the coefficient ideals of a strongly Golod ideal are strongly Golod.
- Type
- Article
- Information
- Copyright
- © 2019 Foundation Nagoya Mathematical Journal
References
- 1
- Cited by