Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T23:02:15.408Z Has data issue: false hasContentIssue false

Homogeneous Siegel domains

Published online by Cambridge University Press:  22 January 2016

Josef Dorfmeister*
Affiliation:
Westfälische Wilhelms-Universität
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1935 E. Cartan classified all symmetric bounded domains [6]. At that time he proved that a bounded symmetric domain is homogeneous with respect to its group of holomorphic automorphisms. Thus the more general problem of investigating homogeneous bounded domains arose. It was known to E. Cartan that all homogeneous bounded domains of dimension ≤3 are symmetric [6]. For domains of higher dimension little was known. The first example of a 4-dimensional, homogeneous, non-symmetric bounded domain was provided by I. Piatetsky-Shapiro [41]. In several papers he investigated homogeneous bounded domains [20], [21], [41], [42], [43]. One of the main results is that all such domains have an unbounded realization of a certain type, as a so-called Siegel domain. But many questions still remained open. Amongst them the question for the structure and explicit form of the infinitesimal automorphisms of a homogeneous Siegel domain.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1982

References

Literaturverzeichnis

[ 1 ] Aronszain, N., Theory of reproducing kernels, Trans. Amer. Math. Soc, 68 (1950), 337404.Google Scholar
[ 2 ] Atiyah, M., Bott, R. and Shapiro, A., Clifford modules, Topology, 3 (1964), 338.Google Scholar
[ 3 ] Bourbaki, N., Algebre, chap. 8, Hermann, Paris, 1958.Google Scholar
[ 4 ] Bourbaki, N., Groupes et Algebres de Lie, chap. I, Hermann, 1971.Google Scholar
[ 5 ] Braun, H. and Koecher, M., Jordan-Algebren, Springer, Berlin-Heidelberg-New York, 1966.Google Scholar
[ 6 ] Cartan, E., Domaines bornés dans l’éspace de n variables complexes, Abh. Math. Sem. Hamburg, 11 (1935), 116162.CrossRefGoogle Scholar
[ 7 ] Cartan, H., Sur les groupes de transformations analytiques, Actualités Sc. et Indus. Hermann, Paris, 1935.Google Scholar
[ 8 ] Chevalley, C., The Algebraic Theory of Spinors, Columbia Univ. Press, Morning-side Heights, New York, 1954.Google Scholar
[ 9 ] Chevalley, C., Théorie des groupes de Lie, Hermann, Paris, 1968.Google Scholar
[10] Dorfmeister, J., Eine Theorie der homogenen, regularen Kegel, Dissertation, Univ. Munster, 1974.Google Scholar
[11] Dorfmeister, J., Zur Konstruktion homogener Kegel, Math. Ann., 216 (1975), 7996.CrossRefGoogle Scholar
[12] Dorfmeister, J., Infinitesimal automorphisms of homogeneous Siegel domains, preprint, 1975.Google Scholar
[13] Dorfmeister, J., Homogene Siegel-Gebiete, Habilitationsschrift, Münster, 1978.Google Scholar
[14] Dorfmeister, J., Inductive construction of homogeneous cones, Trans. Amer. Math. Soc, 252 (1979), 321349.Google Scholar
[15] Dorfmeister, J., Algebraic description of homogeneousc ones, Trans. Amer. Math. Soc, 255 (1979), 6189.Google Scholar
[16] Dorfmeister, J. and Koecher, M., Relative Invarianten und nichtassoziative Algebren, Math. Ann., 228 (1977), 147186.Google Scholar
[17] Dorfmeister, J., Regulare Kegel, Jber. Deutsch. Math.- Verein., 81 (1979), 109151.Google Scholar
[18] Dorfmeister, J., Peirce-Zerlegungen und Jordan-Strukturen zu homogenen Kegeln, Math. Z., 169 (1979), 179194.Google Scholar
[19] Gindikin, S. G., Analysis in homogeneous domains, Russian Math. Surveys, 19 (1964), 189.Google Scholar
[20] Gindikin, S. G., Piatetsky-Shapiro, I. I. and Vinborg, E. B., On the classification and canonical realization of homogeneous bounded domains, Trans. Moscow Math. Soc, 12 (1963), 404437.Google Scholar
[21] Gindikin, S. G., Homogeneous Kähler manifolds, in Geometry of Homogeneous Bounded Domains, C.I.M.E. Edizioni Cremonese, Roma, 1967.Google Scholar
[22] Helgason, S., Differential Geometry and Symmetric Spaces, Academic Press, New York and London, 1962.Google Scholar
[23] Helwig, K.-H., Halbeinfache reelle Jordan-Algebren, Math. Z., 10[9 (1969), 128.Google Scholar
[24] Jacobson, N., Structure and Representations of Jordan algebras, Amer. Math. Soc Coll. Publ., Providence, 1968.Google Scholar
[25] Kaneyuki, S., On the automorphism groups of homogeneous bounded domains, J. Fac. Sci. Univ. Tokyo, 14 (1967), 89130.Google Scholar
[26] Kaneyuki, S., Homogeneous Bounded Domains and Siegel Domains, Lecture Notes in Mathematics 241, Springer, Berlin-Heidelberg-New York, 1971.Google Scholar
[27] Kaneyuki, S. and Tsuji, T., Classification of homogeneous bounded domains of lower dimension, Nagoya Math. J., 53 (1974), 146.CrossRefGoogle Scholar
[28] Kaup, W., Einige Bemerkungen über polynomiale Vektorfelder, Jordanalgebren und die Automorphismen von Siegelschen Gebieten, Math. Ann., 204 (1973), 131144.Google Scholar
[29] Kaup, W., Matsushima, Y. and Ochiai, T., On the automorphisms and equivalences of generalized Siegel domains, Amer. J. Math., 92 (1970), 475497.CrossRefGoogle Scholar
[30] Kobayashi, , Hyperbolic Manifolds and Holomorphic Mappings, Pur and Applied Mathematics, Marcel Dekker, New York, 1970.Google Scholar
[31] Koecher, M., Jordan-Algebras and their Applications, Lecture Notes, Univ. Minnesota, 1962.Google Scholar
[32] Koecher, M., An, Elementary Approach to Bounded Symmetric Domains, Rice Univ., Houston, 1969.Google Scholar
[33] Koecher, M., Eine Konstruktion von Jordan-Algebren, manuscripta math., 23 (1978), 387425.Google Scholar
[34] Loos, O., Jordan triple systems, R-spaces, and bounded symmetric domains, Bull. Amer. Math. Soc, 77 (1971), 558561.Google Scholar
[35] Loos, O., Bounded symmetric domains and Jordan pairs, Math. Lectures, Univ. California Irvine, 1977.Google Scholar
[36] Murakami, S., On Automorphisms of Siegel Domains, Lecture Notes in Mathematics 286, Springer, Berlin-Heidelberg-New York, 1971.Google Scholar
[37] Nakajima, K., Some studies on Siegel domains, J. Math. Soc. Japan, 27 (1975), 5475.Google Scholar
[38] Nakajima, K., Symmetric spaces associated with Siegel domains, J. Math. Kyoto Univ., 15 (1975), 303349.Google Scholar
[39] Nakajima, K., On realization of Siegel domains of the second kind as those of the third kind, J. Math. Kyoto Univ., 16 (1976), 143166.Google Scholar
[40] Narasimhan, R., Several Complex Variables, The Univ. of Chicago Press, Chicago and London, 1971.Google Scholar
[41] Piatetsky-Shapiro, I., On a problem proposed by Cartan, E., Dokl. Akad. Nauk. SSSR, 113 (1957), 980983.Google Scholar
[42] Piatetsky-Shapiro, I., Géometrie des domaines classiques et théorie des fonctions automorphes, Dunod, Paris, 1966.Google Scholar
[43] Piatetsky-Shapiro, I., The geometry and classification of bounded homogeneous domains, Russian Math. Surveys, 20 (1966), 148.CrossRefGoogle Scholar
[44] Rothaus, O., Automorphisms of Siegel domains, Trans. Amer. Math. Soc, 162 (1971), 351382.Google Scholar
[45] Rothaus, O., Automorphisms of Siegel domains, Amer. J. Math., 101 (1979), 11671179.Google Scholar
[46] Satake, I., On classification of quasi-symmetric domains, Nagoya Math. J., 62 (1976), 112.Google Scholar
[47] Satake, I., Algebraic structures of symmetric domains, Iwanami Shoten and Princeton Univ. Press, 1980.Google Scholar
[48] Satake, I., Infinitesimal Automorphisms of Symmetric Siegel Domains, unpublished manuscript, will be contained in [47].Google Scholar
[49] Sudo, M., On infinitesimal automorphisms of some non-degenerate Siegel domains, J. Fac. Sci. Univ. Tokyo, 22 (1975), 429436.Google Scholar
[50] Sudo, M., A remark on Siegel domains of second kind, J. Fac. Sci. Univ. Tokyo, 22 (1975), 199203.Google Scholar
[51] Sudo, M., On infinitesimal automorphisms of Siegel domains over classical cones, preprint.Google Scholar
[52] Takeuchi, M., Homogeneous Siegel Domains, Pub. Study Group Geometry, No. 7, Tokyo 1973.Google Scholar
[53] Takeuchi, , On symmetric Siegel domains, Nagoya Math. J., 59 (1975), 944.Google Scholar
[54] Tanaka, N., On infinitesimal automorphisms of Siegel domains, J. Math. Soc. Japan, 22 (1970), 180212.Google Scholar
[55] Tsuji, T., Classification of homogeneous Siegel domains of type II of dimensions 9 and 10, Proc. Japan Acad., 49 (1973), 394396.Google Scholar
[56] Tsuji, T., On infinitesimal automorphisms and homogeneous Siegel domains over circular cones, Proc. Japan Acad., 49 (1973), 3380.Google Scholar
[57] Tsuji, T., Siegel domains over self-dual cones and their automorphisms, Nagoya Math. J., 55 (1974), 3380.Google Scholar
[58] Vey, J., Sur la division des domaines de Siegel, Ann. Sci. Ec. Norm. Sup., 3 (1970), 479506.Google Scholar
[59] Vinberg, E., B., The theory of convex homogeneous cones, Trans. Moscow Math. Soc, 12 (1963), 340403.Google Scholar
[60] Borel, A., Kahlerian coset spaces of semi-simple Lie groups, Proc. Nat. Akad. Sci. U.S.A., 40 (1954), 11471151.Google Scholar
[61] Koszul, , Sur la forme hermitienne canonique des espaces homogenes complexes, Canad. J. Math., 7 (1955), 562576.Google Scholar
[62] Dorfmeister, J., Quasisymmetric Siegel domains and the automorphisms of homogeneous Siegel domains, Amer. J. Math., 102 (1980), 537563.Google Scholar